/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <oox/crypto/AgileEngine.hxx>
#include <oox/helper/binaryinputstream.hxx>
#include <oox/helper/binaryoutputstream.hxx>
#include <sax/tools/converter.hxx>
#include <comphelper/hash.hxx>
#include <comphelper/docpasswordhelper.hxx>
#include <comphelper/random.hxx>
#include <comphelper/processfactory.hxx>
#include <comphelper/base64.hxx>
#include <comphelper/sequence.hxx>
#include <filter/msfilter/mscodec.hxx>
#include <tools/stream.hxx>
#include <tools/XmlWriter.hxx>
#include <sax/fastattribs.hxx>
#include <com/sun/star/xml/sax/XFastParser.hpp>
#include <com/sun/star/xml/sax/XFastTokenHandler.hpp>
#include <com/sun/star/xml/sax/FastParser.hpp>
#include <com/sun/star/xml/sax/FastToken.hpp>
using namespace css;
using namespace css::beans;
using namespace css::io;
using namespace css::lang;
using namespace css::uno;
using namespace css::xml::sax;
using namespace css::xml;
namespace oox::crypto {
namespace {
std::u16string_view stripNamespacePrefix(std::u16string_view rsInputName)
{
size_t idx = rsInputName.find(':');
if (idx == std::u16string_view::npos)
return rsInputName;
return rsInputName.substr(idx + 1);
}
class AgileTokenHandler : public sax_fastparser::FastTokenHandlerBase
{
public:
virtual sal_Int32 SAL_CALL getTokenFromUTF8(const Sequence< sal_Int8 >& /*nIdentifier*/) override
{
return FastToken::DONTKNOW;
}
virtual Sequence<sal_Int8> SAL_CALL getUTF8Identifier(sal_Int32 /*nToken*/) override
{
return Sequence<sal_Int8>();
}
virtual sal_Int32 getTokenDirect(std::string_view /* token */) const override
{
return -1;
}
};
class AgileDocumentHandler : public ::cppu::WeakImplHelper<XFastDocumentHandler>
{
AgileEncryptionInfo& mInfo;
public:
explicit AgileDocumentHandler(AgileEncryptionInfo& rInfo) :
mInfo(rInfo)
{}
void SAL_CALL startDocument() override {}
void SAL_CALL endDocument() override {}
void SAL_CALL processingInstruction( const OUString& /*rTarget*/, const OUString& /*rData*/ ) override {}
void SAL_CALL setDocumentLocator( const Reference< XLocator >& /*xLocator*/ ) override {}
void SAL_CALL startFastElement( sal_Int32 /*Element*/, const Reference< XFastAttributeList >& /*Attribs*/ ) override {}
void SAL_CALL startUnknownElement( const OUString& /*aNamespace*/, const OUString& rName, const Reference< XFastAttributeList >& aAttributeList ) override
{
std::u16string_view rLocalName = stripNamespacePrefix(rName);
const css::uno::Sequence<Attribute> aUnknownAttributes = aAttributeList->getUnknownAttributes();
for (const Attribute& rAttribute : aUnknownAttributes)
{
std::u16string_view rAttrLocalName = stripNamespacePrefix(rAttribute.Name);
if (rAttrLocalName == u"spinCount")
{
::sax::Converter::convertNumber(mInfo.spinCount, rAttribute.Value);
}
else if (rAttrLocalName == u"saltSize")
{
::sax::Converter::convertNumber(mInfo.saltSize, rAttribute.Value);
}
else if (rAttrLocalName == u"blockSize")
{
::sax::Converter::convertNumber(mInfo.blockSize, rAttribute.Value);
}
else if (rAttrLocalName == u"keyBits")
{
::sax::Converter::convertNumber(mInfo.keyBits, rAttribute.Value);
}
else if (rAttrLocalName == u"hashSize")
{
::sax::Converter::convertNumber(mInfo.hashSize, rAttribute.Value);
}
else if (rAttrLocalName == u"cipherAlgorithm")
{
mInfo.cipherAlgorithm = rAttribute.Value;
}
else if (rAttrLocalName == u"cipherChaining")
{
mInfo.cipherChaining = rAttribute.Value;
}
else if (rAttrLocalName == u"hashAlgorithm")
{
mInfo.hashAlgorithm = rAttribute.Value;
}
else if (rAttrLocalName == u"saltValue")
{
Sequence<sal_Int8> saltValue;
comphelper::Base64::decode(saltValue, rAttribute.Value);
if (rLocalName == u"encryptedKey")
mInfo.saltValue = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(saltValue);
else if (rLocalName == u"keyData")
mInfo.keyDataSalt = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(saltValue);
}
else if (rAttrLocalName == u"encryptedVerifierHashInput")
{
Sequence<sal_Int8> encryptedVerifierHashInput;
comphelper::Base64::decode(encryptedVerifierHashInput, rAttribute.Value);
mInfo.encryptedVerifierHashInput = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(encryptedVerifierHashInput);
}
else if (rAttrLocalName == u"encryptedVerifierHashValue")
{
Sequence<sal_Int8> encryptedVerifierHashValue;
comphelper::Base64::decode(encryptedVerifierHashValue, rAttribute.Value);
mInfo.encryptedVerifierHashValue = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(encryptedVerifierHashValue);
}
else if (rAttrLocalName == u"encryptedKeyValue")
{
Sequence<sal_Int8> encryptedKeyValue;
comphelper::Base64::decode(encryptedKeyValue, rAttribute.Value);
mInfo.encryptedKeyValue = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(encryptedKeyValue);
}
if (rAttrLocalName == u"encryptedHmacKey")
{
Sequence<sal_Int8> aValue;
comphelper::Base64::decode(aValue, rAttribute.Value);
mInfo.hmacEncryptedKey = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(aValue);
}
if (rAttrLocalName == u"encryptedHmacValue")
{
Sequence<sal_Int8> aValue;
comphelper::Base64::decode(aValue, rAttribute.Value);
mInfo.hmacEncryptedValue = comphelper::sequenceToContainer<std::vector<sal_uInt8>>(aValue);
}
}
}
void SAL_CALL endFastElement( sal_Int32 /*aElement*/ ) override
{}
void SAL_CALL endUnknownElement( const OUString& /*aNamespace*/, const OUString& /*aName*/ ) override
{}
Reference< XFastContextHandler > SAL_CALL createFastChildContext( sal_Int32 /*aElement*/, const Reference< XFastAttributeList >& /*aAttribs*/ ) override
{
return nullptr;
}
Reference< XFastContextHandler > SAL_CALL createUnknownChildContext( const OUString& /*aNamespace*/, const OUString& /*aName*/, const Reference< XFastAttributeList >& /*aAttribs*/ ) override
{
return this;
}
void SAL_CALL characters( const OUString& /*aChars*/ ) override
{}
};
constexpr const sal_uInt32 constSegmentLength = 4096;
const std::vector<sal_uInt8> constBlock1 { 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79 };
const std::vector<sal_uInt8> constBlock2 { 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e };
const std::vector<sal_uInt8> constBlock3 { 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6 };
const std::vector<sal_uInt8> constBlockHmac1 { 0x5f, 0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, 0xf6 };
const std::vector<sal_uInt8> constBlockHmac2 { 0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, 0x33 };
bool hashCalc(std::vector<sal_uInt8>& output,
std::vector<sal_uInt8>& input,
std::u16string_view sAlgorithm )
{
if (sAlgorithm == u"SHA1")
{
output = comphelper::Hash::calculateHash(input.data(), input.size(), comphelper::HashType::SHA1);
return true;
}
else if (sAlgorithm == u"SHA384")
{
output = comphelper::Hash::calculateHash(input.data(), input.size(), comphelper::HashType::SHA384);
return true;
}
else if (sAlgorithm == u"SHA512")
{
output = comphelper::Hash::calculateHash(input.data(), input.size(), comphelper::HashType::SHA512);
return true;
}
return false;
}
comphelper::CryptoHashType cryptoHashTypeFromString(std::u16string_view sAlgorithm)
{
if (sAlgorithm == u"SHA512")
return comphelper::CryptoHashType::SHA512;
else if (sAlgorithm == u"SHA384")
return comphelper::CryptoHashType::SHA384;
else
return comphelper::CryptoHashType::SHA1;
}
} // namespace
AgileEngine::AgileEngine()
: meEncryptionPreset(AgileEncryptionPreset::AES_256_SHA512)
{}
comphelper::CryptoType AgileEngine::cryptoType(const AgileEncryptionInfo& rInfo)
{
if (rInfo.keyBits == 128 && rInfo.cipherAlgorithm == "AES" && rInfo.cipherChaining == "ChainingModeCBC")
return comphelper::CryptoType::AES_128_CBC;
else if (rInfo.keyBits == 256 && rInfo.cipherAlgorithm == "AES" && rInfo.cipherChaining == "ChainingModeCBC")
return comphelper::CryptoType::AES_256_CBC;
return comphelper::CryptoType::UNKNOWN;
}
static std::vector<sal_uInt8> calculateIV(comphelper::HashType eType,
std::vector<sal_uInt8> const & rSalt,
std::vector<sal_uInt8> const & rBlock,
sal_Int32 nCipherBlockSize)
{
comphelper::Hash aHasher(eType);
aHasher.update(rSalt.data(), rSalt.size());
aHasher.update(rBlock.data(), rBlock.size());
std::vector<sal_uInt8> aIV = aHasher.finalize();
aIV.resize(comphelper::roundUp(sal_Int32(aIV.size()), nCipherBlockSize), 0x36);
return aIV;
}
void AgileEngine::calculateBlock(
std::vector<sal_uInt8> const & rBlock,
std::vector<sal_uInt8>& rHashFinal,
std::vector<sal_uInt8>& rInput,
std::vector<sal_uInt8>& rOutput)
{
std::vector<sal_uInt8> hash(mInfo.hashSize, 0);
std::vector<sal_uInt8> dataFinal(mInfo.hashSize + rBlock.size(), 0);
std::copy(rHashFinal.begin(), rHashFinal.end(), dataFinal.begin());
std::copy(rBlock.begin(), rBlock.end(), dataFinal.begin() + mInfo.hashSize);
hashCalc(hash, dataFinal, mInfo.hashAlgorithm);
sal_Int32 keySize = mInfo.keyBits / 8;
std::vector<sal_uInt8> key(keySize, 0);
std::copy(hash.begin(), hash.begin() + keySize, key.begin());
comphelper::Decrypt aDecryptor(key, mInfo.saltValue, cryptoType(mInfo));
aDecryptor.update(rOutput, rInput);
}
void AgileEngine::encryptBlock(
std::vector<sal_uInt8> const & rBlock,
std::vector<sal_uInt8> & rHashFinal,
std::vector<sal_uInt8> & rInput,
std::vector<sal_uInt8> & rOutput)
{
std::vector<sal_uInt8> hash(mInfo.hashSize, 0);
std::vector<sal_uInt8> dataFinal(mInfo.hashSize + rBlock.size(), 0);
std::copy(rHashFinal.begin(), rHashFinal.end(), dataFinal.begin());
std::copy(rBlock.begin(), rBlock.end(), dataFinal.begin() + mInfo.hashSize);
hashCalc(hash, dataFinal, mInfo.hashAlgorithm);
sal_Int32 keySize = mInfo.keyBits / 8;
std::vector<sal_uInt8> key(keySize, 0);
std::copy(hash.begin(), hash.begin() + keySize, key.begin());
comphelper::Encrypt aEncryptor(key, mInfo.saltValue, cryptoType(mInfo));
aEncryptor.update(rOutput, rInput);
}
void AgileEngine::calculateHashFinal(const OUString& rPassword, std::vector<sal_uInt8>& aHashFinal)
{
aHashFinal = comphelper::DocPasswordHelper::GetOoxHashAsVector(
rPassword, mInfo.saltValue, mInfo.spinCount,
comphelper::Hash::IterCount::PREPEND, mInfo.hashAlgorithm);
}
namespace
{
bool generateBytes(std::vector<sal_uInt8> & rBytes, sal_Int32 nSize)
{
size_t nMax = std::min(rBytes.size(), size_t(nSize));
for (size_t i = 0; i < nMax; ++i)
{
rBytes[i] = sal_uInt8(comphelper::rng::uniform_uint_distribution(0, 0xFF));
}
return true;
}
} // end anonymous namespace
bool AgileEngine::decryptAndCheckVerifierHash(OUString const & rPassword)
{
std::vector<sal_uInt8>& encryptedHashValue = mInfo.encryptedVerifierHashValue;
size_t encryptedHashValueSize = encryptedHashValue.size();
size_t nHashValueSize = mInfo.hashSize;
if (nHashValueSize > encryptedHashValueSize)
return false;
std::vector<sal_uInt8> hashFinal(nHashValueSize, 0);
calculateHashFinal(rPassword, hashFinal);
std::vector<sal_uInt8>& encryptedHashInput = mInfo.encryptedVerifierHashInput;
// SALT - needs to be a multiple of block size (?)
sal_uInt32 nSaltSize = comphelper::roundUp(mInfo.saltSize, mInfo.blockSize);
if (nSaltSize < encryptedHashInput.size())
return false;
std::vector<sal_uInt8> hashInput(nSaltSize, 0);
calculateBlock(constBlock1, hashFinal, encryptedHashInput, hashInput);
std::vector<sal_uInt8> hashValue(encryptedHashValueSize, 0);
calculateBlock(constBlock2, hashFinal, encryptedHashValue, hashValue);
std::vector<sal_uInt8> hash(nHashValueSize, 0);
hashCalc(hash, hashInput, mInfo.hashAlgorithm);
return std::equal(hash.begin(), hash.end(), hashValue.begin());
}
void AgileEngine::decryptEncryptionKey(OUString const & rPassword)
{
sal_Int32 nKeySize = mInfo.keyBits / 8;
mKey.clear();
mKey.resize(nKeySize, 0);
std::vector<sal_uInt8> aPasswordHash(mInfo.hashSize, 0);
calculateHashFinal(rPassword, aPasswordHash);
calculateBlock(constBlock3, aPasswordHash, mInfo.encryptedKeyValue, mKey);
}
// TODO: Rename
bool AgileEngine::generateEncryptionKey(OUString const & rPassword)
{
bool bResult = decryptAndCheckVerifierHash(rPassword);
if (bResult)
{
decryptEncryptionKey(rPassword);
decryptHmacKey();
decryptHmacValue();
}
return bResult;
}
bool AgileEngine::decryptHmacKey()
{
// Initialize hmacKey
mInfo.hmacKey.clear();
mInfo.hmacKey.resize(mInfo.hmacEncryptedKey.size(), 0);
// Calculate IV
comphelper::HashType eType;
if (mInfo.hashAlgorithm == "SHA1")
eType = comphelper::HashType::SHA1;
else if (mInfo.hashAlgorithm == "SHA384")
eType = comphelper::HashType::SHA384;
else if (mInfo.hashAlgorithm == "SHA512")
eType = comphelper::HashType::SHA512;
else
return false;
std::vector<sal_uInt8> iv = calculateIV(eType, mInfo.keyDataSalt, constBlockHmac1, mInfo.blockSize);
// Decrypt without key, calculated iv
comphelper::Decrypt aDecrypt(mKey, iv, cryptoType(mInfo));
aDecrypt.update(mInfo.hmacKey, mInfo.hmacEncryptedKey);
mInfo.hmacKey.resize(mInfo.hashSize, 0);
return true;
}
bool AgileEngine::decryptHmacValue()
{
// Initialize hmacHash
mInfo.hmacHash.clear();
mInfo.hmacHash.resize(mInfo.hmacEncryptedValue.size(), 0);
// Calculate IV
comphelper::HashType eType;
if (mInfo.hashAlgorithm == "SHA1")
eType = comphelper::HashType::SHA1;
else if (mInfo.hashAlgorithm == "SHA384")
eType = comphelper::HashType::SHA384;
else if (mInfo.hashAlgorithm == "SHA512")
eType = comphelper::HashType::SHA512;
else
return false;
std::vector<sal_uInt8> iv = calculateIV(eType, mInfo.keyDataSalt, constBlockHmac2, mInfo.blockSize);
// Decrypt without key, calculated iv
comphelper::Decrypt aDecrypt(mKey, iv, cryptoType(mInfo));
aDecrypt.update(mInfo.hmacHash, mInfo.hmacEncryptedValue);
mInfo.hmacHash.resize(mInfo.hashSize, 0);
return true;
}
bool AgileEngine::checkDataIntegrity()
{
bool bResult = (mInfo.hmacHash.size() == mInfo.hmacCalculatedHash.size() &&
std::equal(mInfo.hmacHash.begin(), mInfo.hmacHash.end(), mInfo.hmacCalculatedHash.begin()));
return bResult;
}
bool AgileEngine::decrypt(BinaryXInputStream& aInputStream,
BinaryXOutputStream& aOutputStream)
{
comphelper::CryptoHash aCryptoHash(mInfo.hmacKey, cryptoHashTypeFromString(mInfo.hashAlgorithm));
sal_uInt32 totalSize = aInputStream.readuInt32(); // Document unencrypted size - 4 bytes
// account for size in HMAC
std::vector<sal_uInt8> aSizeBytes(sizeof(sal_uInt32));
ByteOrderConverter::writeLittleEndian(aSizeBytes.data(), totalSize);
aCryptoHash.update(aSizeBytes);
aInputStream.skip(4); // Reserved 4 Bytes
// account for reserved 4 bytes (must be 0)
std::vector<sal_uInt8> aReserved{0,0,0,0};
aCryptoHash.update(aReserved);
// setup decryption
std::vector<sal_uInt8>& keyDataSalt = mInfo.keyDataSalt;
sal_uInt32 saltSize = mInfo.saltSize;
sal_uInt32 keySize = mInfo.keyBits / 8;
sal_uInt32 segment = 0;
std::vector<sal_uInt8> saltWithBlockKey(saltSize + sizeof(segment), 0);
std::copy(keyDataSalt.begin(), keyDataSalt.end(), saltWithBlockKey.begin());
std::vector<sal_uInt8> hash(mInfo.hashSize, 0);
std::vector<sal_uInt8> iv(keySize, 0);
std::vector<sal_uInt8> inputBuffer(constSegmentLength);
std::vector<sal_uInt8> outputBuffer(constSegmentLength);
sal_uInt32 inputLength;
sal_uInt32 outputLength;
sal_uInt32 remaining = totalSize;
while ((inputLength = aInputStream.readMemory(inputBuffer.data(), inputBuffer.size())) > 0)
{
auto p = saltWithBlockKey.begin() + saltSize;
p[0] = segment & 0xFF;
p[1] = (segment >> 8) & 0xFF;
p[2] = (segment >> 16) & 0xFF;
p[3] = segment >> 24;
hashCalc(hash, saltWithBlockKey, mInfo.hashAlgorithm);
// Only if hash > keySize
std::copy(hash.begin(), hash.begin() + keySize, iv.begin());
comphelper::Decrypt aDecryptor(mKey, iv, cryptoType(mInfo));
outputLength = aDecryptor.update(outputBuffer, inputBuffer, inputLength);
sal_uInt32 writeLength = std::min(outputLength, remaining);
aCryptoHash.update(inputBuffer, inputLength);
aOutputStream.writeMemory(outputBuffer.data(), writeLength);
remaining -= outputLength;
segment++;
}
mInfo.hmacCalculatedHash = aCryptoHash.finalize();
return true;
}
bool AgileEngine::readEncryptionInfo(uno::Reference<io::XInputStream> & rxInputStream)
{
// Check reserved value
std::vector<sal_uInt8> aExpectedReservedBytes(sizeof(sal_uInt32));
ByteOrderConverter::writeLittleEndian(aExpectedReservedBytes.data(), msfilter::AGILE_ENCRYPTION_RESERVED);
uno::Sequence<sal_Int8> aReadReservedBytes(sizeof(sal_uInt32));
rxInputStream->readBytes(aReadReservedBytes, aReadReservedBytes.getLength());
if (!std::equal(std::cbegin(aReadReservedBytes), std::cend(aReadReservedBytes), aExpectedReservedBytes.begin()))
return false;
mInfo.spinCount = 0;
mInfo.saltSize = 0;
mInfo.keyBits = 0;
mInfo.hashSize = 0;
mInfo.blockSize = 0;
Reference<XFastDocumentHandler> xFastDocumentHandler(new AgileDocumentHandler(mInfo));
Reference<XFastTokenHandler> xFastTokenHandler(new AgileTokenHandler);
Reference<XFastParser> xParser(css::xml::sax::FastParser::create(comphelper::getProcessComponentContext()));
xParser->setFastDocumentHandler(xFastDocumentHandler);
xParser->setTokenHandler(xFastTokenHandler);
InputSource aInputSource;
aInputSource.aInputStream = rxInputStream;
xParser->parseStream(aInputSource);
// CHECK info data
if (2 > mInfo.blockSize || mInfo.blockSize > 4096)
return false;
if (0 > mInfo.spinCount || mInfo.spinCount > 10000000)
return false;
if (1 > mInfo.saltSize|| mInfo.saltSize > 65536) // Check
return false;
// AES 128 CBC with SHA1
if (mInfo.keyBits == 128 &&
mInfo.cipherAlgorithm == "AES" &&
mInfo.cipherChaining == "ChainingModeCBC" &&
mInfo.hashAlgorithm == "SHA1" &&
mInfo.hashSize == comphelper::SHA1_HASH_LENGTH)
{
return true;
}
// AES 128 CBC with SHA384
if (mInfo.keyBits == 128 &&
mInfo.cipherAlgorithm == "AES" &&
mInfo.cipherChaining == "ChainingModeCBC" &&
mInfo.hashAlgorithm == "SHA384" &&
mInfo.hashSize == comphelper::SHA384_HASH_LENGTH)
{
return true;
}
// AES 256 CBC with SHA512
if (mInfo.keyBits == 256 &&
mInfo.cipherAlgorithm == "AES" &&
mInfo.cipherChaining == "ChainingModeCBC" &&
mInfo.hashAlgorithm == "SHA512" &&
mInfo.hashSize == comphelper::SHA512_HASH_LENGTH)
{
return true;
}
return false;
}
bool AgileEngine::generateAndEncryptVerifierHash(OUString const & rPassword)
{
if (!generateBytes(mInfo.saltValue, mInfo.saltSize))
return false;
std::vector<sal_uInt8> unencryptedVerifierHashInput(mInfo.saltSize);
if (!generateBytes(unencryptedVerifierHashInput, mInfo.saltSize))
return false;
// HASH - needs to be modified to be multiple of block size
sal_Int32 nVerifierHash = comphelper::roundUp(mInfo.hashSize, mInfo.blockSize);
std::vector<sal_uInt8> unencryptedVerifierHashValue;
if (!hashCalc(unencryptedVerifierHashValue, unencryptedVerifierHashInput, mInfo.hashAlgorithm))
return false;
unencryptedVerifierHashValue.resize(nVerifierHash, 0);
std::vector<sal_uInt8> hashFinal(mInfo.hashSize, 0);
calculateHashFinal(rPassword, hashFinal);
encryptBlock(constBlock1, hashFinal, unencryptedVerifierHashInput, mInfo.encryptedVerifierHashInput);
encryptBlock(constBlock2, hashFinal, unencryptedVerifierHashValue, mInfo.encryptedVerifierHashValue);
return true;
}
bool AgileEngine::encryptHmacKey()
{
// Initialize hmacKey
mInfo.hmacKey.clear();
mInfo.hmacKey.resize(mInfo.hashSize, 0);
if (!generateBytes(mInfo.hmacKey, mInfo.hashSize))
return false;
// Encrypted salt must be multiple of block size
sal_Int32 nEncryptedSaltSize = comphelper::roundUp(mInfo.hashSize, mInfo.blockSize);
// We need to extend hmacSalt to multiple of block size, padding with 0x36
std::vector<sal_uInt8> extendedSalt(mInfo.hmacKey);
extendedSalt.resize(nEncryptedSaltSize, 0x36);
// Initialize hmacEncryptedKey
mInfo.hmacEncryptedKey.clear();
mInfo.hmacEncryptedKey.resize(nEncryptedSaltSize, 0);
// Calculate IV
comphelper::HashType eType;
if (mInfo.hashAlgorithm == "SHA1")
eType = comphelper::HashType::SHA1;
else if (mInfo.hashAlgorithm == "SHA384")
eType = comphelper::HashType::SHA384;
else if (mInfo.hashAlgorithm == "SHA512")
eType = comphelper::HashType::SHA512;
else
return false;
std::vector<sal_uInt8> iv = calculateIV(eType, mInfo.keyDataSalt, constBlockHmac1, mInfo.blockSize);
// Encrypt without key, calculated iv
comphelper::Encrypt aEncryptor(mKey, iv, cryptoType(mInfo));
aEncryptor.update(mInfo.hmacEncryptedKey, extendedSalt);
return true;
}
bool AgileEngine::encryptHmacValue()
{
sal_Int32 nEncryptedValueSize = comphelper::roundUp(mInfo.hashSize, mInfo.blockSize);
mInfo.hmacEncryptedValue.clear();
mInfo.hmacEncryptedValue.resize(nEncryptedValueSize, 0);
std::vector<sal_uInt8> extendedHash(mInfo.hmacHash);
extendedHash.resize(nEncryptedValueSize, 0x36);
// Calculate IV
comphelper::HashType eType;
if (mInfo.hashAlgorithm == "SHA1")
eType = comphelper::HashType::SHA1;
else if (mInfo.hashAlgorithm == "SHA384")
eType = comphelper::HashType::SHA384;
else if (mInfo.hashAlgorithm == "SHA512")
eType = comphelper::HashType::SHA512;
else
return false;
std::vector<sal_uInt8> iv = calculateIV(eType, mInfo.keyDataSalt, constBlockHmac2, mInfo.blockSize);
// Encrypt without key, calculated iv
comphelper::Encrypt aEncryptor(mKey, iv, cryptoType(mInfo));
aEncryptor.update(mInfo.hmacEncryptedValue, extendedHash);
return true;
}
bool AgileEngine::encryptEncryptionKey(OUString const & rPassword)
{
sal_Int32 nKeySize = mInfo.keyBits / 8;
mKey.clear();
mKey.resize(nKeySize, 0);
mInfo.encryptedKeyValue.clear();
mInfo.encryptedKeyValue.resize(nKeySize, 0);
if (!generateBytes(mKey, nKeySize))
return false;
std::vector<sal_uInt8> aPasswordHash(mInfo.hashSize, 0);
calculateHashFinal(rPassword, aPasswordHash);
encryptBlock(constBlock3, aPasswordHash, mKey, mInfo.encryptedKeyValue);
return true;
}
bool AgileEngine::setupEncryption(OUString const & rPassword)
{
if (meEncryptionPreset == AgileEncryptionPreset::AES_128_SHA1)
setupEncryptionParameters({ 100000, 16, 128, 20, 16, u"AES"_ustr, u"ChainingModeCBC"_ustr, u"SHA1"_ustr });
else if (meEncryptionPreset == AgileEncryptionPreset::AES_128_SHA384)
setupEncryptionParameters({ 100000, 16, 128, 48, 16, u"AES"_ustr, u"ChainingModeCBC"_ustr, u"SHA384"_ustr });
else
setupEncryptionParameters({ 100000, 16, 256, 64, 16, u"AES"_ustr, u"ChainingModeCBC"_ustr, u"SHA512"_ustr });
return setupEncryptionKey(rPassword);
}
void AgileEngine::setupEncryptionParameters(AgileEncryptionParameters const & rAgileEncryptionParameters)
{
mInfo.spinCount = rAgileEncryptionParameters.spinCount;
mInfo.saltSize = rAgileEncryptionParameters.saltSize;
mInfo.keyBits = rAgileEncryptionParameters.keyBits;
mInfo.hashSize = rAgileEncryptionParameters.hashSize;
mInfo.blockSize = rAgileEncryptionParameters.blockSize;
mInfo.cipherAlgorithm = rAgileEncryptionParameters.cipherAlgorithm;
mInfo.cipherChaining = rAgileEncryptionParameters.cipherChaining;
mInfo.hashAlgorithm = rAgileEncryptionParameters.hashAlgorithm;
mInfo.keyDataSalt.resize(mInfo.saltSize);
mInfo.saltValue.resize(mInfo.saltSize);
mInfo.encryptedVerifierHashInput.resize(mInfo.saltSize);
mInfo.encryptedVerifierHashValue.resize(comphelper::roundUp(mInfo.hashSize, mInfo.blockSize), 0);
}
bool AgileEngine::setupEncryptionKey(OUString const & rPassword)
{
if (!generateAndEncryptVerifierHash(rPassword))
return false;
if (!encryptEncryptionKey(rPassword))
return false;
if (!generateBytes(mInfo.keyDataSalt, mInfo.saltSize))
return false;
if (!encryptHmacKey())
return false;
return true;
}
void AgileEngine::writeEncryptionInfo(BinaryXOutputStream & rStream)
{
rStream.WriteUInt32(msfilter::VERSION_INFO_AGILE);
rStream.WriteUInt32(msfilter::AGILE_ENCRYPTION_RESERVED);
SvMemoryStream aMemStream;
tools::XmlWriter aXmlWriter(&aMemStream);
if (aXmlWriter.startDocument(0/*nIndent*/))
{
aXmlWriter.startElement(""_ostr, "encryption"_ostr, "http://schemas.microsoft.com/office/2006/encryption"_ostr);
aXmlWriter.attribute("xmlns:p", "http://schemas.microsoft.com/office/2006/keyEncryptor/password"_ostr);
aXmlWriter.startElement("keyData");
aXmlWriter.attribute("saltSize", mInfo.saltSize);
aXmlWriter.attribute("blockSize", mInfo.blockSize);
aXmlWriter.attribute("keyBits", mInfo.keyBits);
aXmlWriter.attribute("hashSize", mInfo.hashSize);
aXmlWriter.attribute("cipherAlgorithm", mInfo.cipherAlgorithm);
aXmlWriter.attribute("cipherChaining", mInfo.cipherChaining);
aXmlWriter.attribute("hashAlgorithm", mInfo.hashAlgorithm);
aXmlWriter.attributeBase64("saltValue", mInfo.keyDataSalt);
aXmlWriter.endElement();
aXmlWriter.startElement("dataIntegrity");
aXmlWriter.attributeBase64("encryptedHmacKey", mInfo.hmacEncryptedKey);
aXmlWriter.attributeBase64("encryptedHmacValue", mInfo.hmacEncryptedValue);
aXmlWriter.endElement();
aXmlWriter.startElement("keyEncryptors");
aXmlWriter.startElement("keyEncryptor");
aXmlWriter.attribute("uri", "http://schemas.microsoft.com/office/2006/keyEncryptor/password"_ostr);
aXmlWriter.startElement("p"_ostr, "encryptedKey"_ostr, ""_ostr);
aXmlWriter.attribute("spinCount", mInfo.spinCount);
aXmlWriter.attribute("saltSize", mInfo.saltSize);
aXmlWriter.attribute("blockSize", mInfo.blockSize);
aXmlWriter.attribute("keyBits", mInfo.keyBits);
aXmlWriter.attribute("hashSize", mInfo.hashSize);
aXmlWriter.attribute("cipherAlgorithm", mInfo.cipherAlgorithm);
aXmlWriter.attribute("cipherChaining", mInfo.cipherChaining);
aXmlWriter.attribute("hashAlgorithm", mInfo.hashAlgorithm);
aXmlWriter.attributeBase64("saltValue", mInfo.saltValue);
aXmlWriter.attributeBase64("encryptedVerifierHashInput", mInfo.encryptedVerifierHashInput);
aXmlWriter.attributeBase64("encryptedVerifierHashValue", mInfo.encryptedVerifierHashValue);
aXmlWriter.attributeBase64("encryptedKeyValue", mInfo.encryptedKeyValue);
aXmlWriter.endElement();
aXmlWriter.endElement();
aXmlWriter.endElement();
aXmlWriter.endElement();
aXmlWriter.endDocument();
}
rStream.writeMemory(aMemStream.GetData(), aMemStream.GetSize());
}
void AgileEngine::encrypt(const css::uno::Reference<css::io::XInputStream> & rxInputStream,
css::uno::Reference<css::io::XOutputStream> & rxOutputStream,
sal_uInt32 nSize)
{
comphelper::CryptoHash aCryptoHash(mInfo.hmacKey, cryptoHashTypeFromString(mInfo.hashAlgorithm));
BinaryXOutputStream aBinaryOutputStream(rxOutputStream, false);
BinaryXInputStream aBinaryInputStream(rxInputStream, false);
std::vector<sal_uInt8> aSizeBytes(sizeof(sal_uInt32));
ByteOrderConverter::writeLittleEndian(aSizeBytes.data(), nSize);
aBinaryOutputStream.writeMemory(aSizeBytes.data(), aSizeBytes.size()); // size
aCryptoHash.update(aSizeBytes, aSizeBytes.size());
std::vector<sal_uInt8> aNull{0,0,0,0};
aBinaryOutputStream.writeMemory(aNull.data(), aNull.size()); // reserved
aCryptoHash.update(aNull, aNull.size());
std::vector<sal_uInt8>& keyDataSalt = mInfo.keyDataSalt;
sal_uInt32 saltSize = mInfo.saltSize;
sal_uInt32 keySize = mInfo.keyBits / 8;
sal_uInt32 nSegment = 0;
sal_uInt32 nSegmentByteSize = sizeof(nSegment);
std::vector<sal_uInt8> saltWithBlockKey(saltSize + nSegmentByteSize, 0);
std::copy(keyDataSalt.begin(), keyDataSalt.end(), saltWithBlockKey.begin());
std::vector<sal_uInt8> hash(mInfo.hashSize, 0);
std::vector<sal_uInt8> iv(keySize, 0);
std::vector<sal_uInt8> inputBuffer(constSegmentLength);
std::vector<sal_uInt8> outputBuffer(constSegmentLength);
sal_uInt32 inputLength;
sal_uInt32 outputLength;
while ((inputLength = aBinaryInputStream.readMemory(inputBuffer.data(), inputBuffer.size())) > 0)
{
sal_uInt32 correctedInputLength = inputLength % mInfo.blockSize == 0 ?
inputLength : comphelper::roundUp(inputLength, sal_uInt32(mInfo.blockSize));
// Update Key
auto p = saltWithBlockKey.begin() + saltSize;
p[0] = nSegment & 0xFF;
p[1] = (nSegment >> 8) & 0xFF;
p[2] = (nSegment >> 16) & 0xFF;
p[3] = nSegment >> 24;
hashCalc(hash, saltWithBlockKey, mInfo.hashAlgorithm);
// Only if hash > keySize
std::copy(hash.begin(), hash.begin() + keySize, iv.begin());
comphelper::Encrypt aEncryptor(mKey, iv, AgileEngine::cryptoType(mInfo));
outputLength = aEncryptor.update(outputBuffer, inputBuffer, correctedInputLength);
aBinaryOutputStream.writeMemory(outputBuffer.data(), outputLength);
aCryptoHash.update(outputBuffer, outputLength);
nSegment++;
}
mInfo.hmacHash = aCryptoHash.finalize();
encryptHmacValue();
}
} // namespace oox::crypto
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V730 Not all members of a class are initialized inside the constructor. Consider inspecting: mInfo.