/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/log.hxx>
#include <rtl/crc.h>
#include <rtl/math.hxx>
#include <o3tl/underlyingenumvalue.hxx>
#include <osl/diagnose.h>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/color/bcolormodifier.hxx>
#include <vcl/ImageTree.hxx>
#include <vcl/bitmap/BitmapMonochromeFilter.hxx>
#include <vcl/outdev.hxx>
#include <vcl/alpha.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/svapp.hxx>
#include <vcl/virdev.hxx>
#include <vcl/settings.hxx>
// BitmapEx::Create
#include <salbmp.hxx>
#include <salinst.hxx>
#include <svdata.hxx>
#include <vcl/BitmapWriteAccess.hxx>
#include <bitmap/BitmapMaskToAlphaFilter.hxx>
#include <o3tl/any.hxx>
#include <tools/stream.hxx>
#include <vcl/filter/PngImageWriter.hxx>
#include <com/sun/star/beans/XFastPropertySet.hpp>
#include <memory>
using namespace ::com::sun::star;
BitmapEx::BitmapEx()
{
}
BitmapEx::BitmapEx( const BitmapEx& ) = default;
BitmapEx::BitmapEx( const BitmapEx& rBitmapEx, Point aSrc, Size aSize )
{
if( rBitmapEx.IsEmpty() || aSize.IsEmpty() )
return;
maBitmap = Bitmap(aSize, rBitmapEx.maBitmap.getPixelFormat());
maBitmapSize = aSize;
if( rBitmapEx.IsAlpha() )
maAlphaMask = AlphaMask( aSize );
tools::Rectangle aDestRect( Point( 0, 0 ), aSize );
tools::Rectangle aSrcRect( aSrc, aSize );
CopyPixel( aDestRect, aSrcRect, rBitmapEx );
}
BitmapEx::BitmapEx(Size aSize, vcl::PixelFormat ePixelFormat)
{
maBitmap = Bitmap(aSize, ePixelFormat);
maBitmapSize = aSize;
}
BitmapEx::BitmapEx( const OUString& rIconName )
{
loadFromIconTheme( rIconName );
}
void BitmapEx::loadFromIconTheme( const OUString& rIconName )
{
bool bSuccess;
OUString aIconTheme;
try
{
aIconTheme = Application::GetSettings().GetStyleSettings().DetermineIconTheme();
bSuccess = ImageTree::get().loadImage(rIconName, aIconTheme, *this, true);
}
catch (...)
{
bSuccess = false;
}
SAL_WARN_IF( !bSuccess, "vcl", "BitmapEx::BitmapEx(): could not load image " << rIconName << " via icon theme " << aIconTheme);
}
BitmapEx::BitmapEx( const Bitmap& rBmp ) :
maBitmap ( rBmp ),
maBitmapSize ( maBitmap.GetSizePixel() )
{
}
BitmapEx::BitmapEx( const Bitmap& rBmp, const Bitmap& rMask ) :
maBitmap ( rBmp ),
maBitmapSize ( maBitmap.GetSizePixel() )
{
if (rMask.IsEmpty())
return;
assert(typeid(rMask) != typeid(AlphaMask)
&& "If this mask is actually an AlphaMask, then it will be inverted unnecessarily "
"and the alpha channel will be wrong");
if( rMask.getPixelFormat() == vcl::PixelFormat::N8_BPP && rMask.HasGreyPalette8Bit() )
{
maAlphaMask = rMask;
maAlphaMask.Invert();
}
else if( rMask.getPixelFormat() == vcl::PixelFormat::N8_BPP )
{
BitmapEx aMaskEx(rMask);
BitmapFilter::Filter(aMaskEx, BitmapMonochromeFilter(255));
aMaskEx.Invert();
maAlphaMask = aMaskEx.GetBitmap();
}
else
{
// convert to alpha bitmap
SAL_WARN("vcl", "BitmapEx: forced mask to monochrome");
BitmapEx aMaskEx(rMask);
BitmapFilter::Filter(aMaskEx, BitmapMonochromeFilter(255));
aMaskEx.Invert();
maAlphaMask = aMaskEx.GetBitmap();
}
if (!maBitmap.IsEmpty() && maBitmap.GetSizePixel() != maAlphaMask.GetSizePixel())
{
SAL_WARN("vcl", "Mask size differs from Bitmap size, corrected Mask (!)");
maAlphaMask.Scale(maBitmap.GetSizePixel(), BmpScaleFlag::Fast);
}
}
BitmapEx::BitmapEx( const Bitmap& rBmp, const AlphaMask& rAlphaMask ) :
maBitmap ( rBmp ),
maAlphaMask ( rAlphaMask ),
maBitmapSize ( maBitmap.GetSizePixel() )
{
if (!maBitmap.IsEmpty() && !maAlphaMask.IsEmpty() && maBitmap.GetSizePixel() != maAlphaMask.GetSizePixel())
{
SAL_WARN("vcl", "Alpha size differs from Bitmap size, corrected Mask (!)");
maAlphaMask.Scale(rBmp.GetSizePixel(), BmpScaleFlag::Fast);
}
}
BitmapEx::BitmapEx( const Bitmap& rBmp, const Color& rTransparentColor ) :
maBitmap ( rBmp ),
maBitmapSize ( maBitmap.GetSizePixel() )
{
maAlphaMask = maBitmap.CreateAlphaMask( rTransparentColor );
SAL_WARN_IF(rBmp.GetSizePixel() != maAlphaMask.GetSizePixel(), "vcl",
"BitmapEx::BitmapEx(): size mismatch for bitmap and alpha mask.");
}
BitmapEx& BitmapEx::operator=( const BitmapEx& ) = default;
bool BitmapEx::operator==( const BitmapEx& rBitmapEx ) const
{
if (GetSizePixel() != rBitmapEx.GetSizePixel())
return false;
if (maBitmap != rBitmapEx.maBitmap)
return false;
return maAlphaMask == rBitmapEx.maAlphaMask;
}
bool BitmapEx::IsEmpty() const
{
return( maBitmap.IsEmpty() && maAlphaMask.IsEmpty() );
}
void BitmapEx::SetEmpty()
{
maBitmap.SetEmpty();
maAlphaMask.SetEmpty();
}
void BitmapEx::Clear()
{
SetEmpty();
}
void BitmapEx::ClearAlpha()
{
maAlphaMask.SetEmpty();
}
bool BitmapEx::IsAlpha() const
{
return !maAlphaMask.IsEmpty();
}
const Bitmap& BitmapEx::GetBitmap() const
{
return maBitmap;
}
Bitmap BitmapEx::GetBitmap( Color aTransparentReplaceColor ) const
{
Bitmap aRetBmp( maBitmap );
if( !maAlphaMask.IsEmpty() )
{
aRetBmp.Replace( maAlphaMask, aTransparentReplaceColor );
}
return aRetBmp;
}
sal_Int64 BitmapEx::GetSizeBytes() const
{
sal_Int64 nSizeBytes = maBitmap.GetSizeBytes();
if( !maAlphaMask.IsEmpty() )
nSizeBytes += maAlphaMask.GetSizeBytes();
return nSizeBytes;
}
BitmapChecksum BitmapEx::GetChecksum() const
{
BitmapChecksum nCrc = maBitmap.GetChecksum();
if( !maAlphaMask.IsEmpty() )
{
BitmapChecksumOctetArray aBCOA;
BCToBCOA( maAlphaMask.GetChecksum(), aBCOA );
nCrc = rtl_crc32( nCrc, aBCOA, BITMAP_CHECKSUM_SIZE );
}
return nCrc;
}
bool BitmapEx::Invert()
{
if (!maBitmap.IsEmpty())
return maBitmap.Invert();
return false;
}
bool BitmapEx::Mirror(BmpMirrorFlags nMirrorFlags)
{
if (maBitmap.IsEmpty())
return false;
bool bRet = maBitmap.Mirror( nMirrorFlags );
if (bRet && !maAlphaMask.IsEmpty())
maAlphaMask.Mirror(nMirrorFlags);
return bRet;
}
bool BitmapEx::Scale( const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag )
{
if (maBitmap.IsEmpty())
return false;
bool bRet = maBitmap.Scale( rScaleX, rScaleY, nScaleFlag );
if (bRet && !maAlphaMask.IsEmpty())
maAlphaMask.Scale(rScaleX, rScaleY, nScaleFlag);
maBitmapSize = maBitmap.GetSizePixel();
SAL_WARN_IF(!maAlphaMask.IsEmpty() && maBitmap.GetSizePixel() != maAlphaMask.GetSizePixel(), "vcl",
"BitmapEx::Scale(): size mismatch for bitmap and alpha mask.");
return bRet;
}
static bool lcl_ShouldScale(Size const& rOrigSize, Size const& rNewSize)
{
return rOrigSize.Width() && rOrigSize.Height()
&& (rNewSize.Width() != rOrigSize.Width() || rNewSize.Height() != rOrigSize.Height());
}
bool BitmapEx::Scale( const Size& rNewSize, BmpScaleFlag nScaleFlag )
{
if (lcl_ShouldScale(GetSizePixel(), rNewSize))
{
return Scale(static_cast<double>(rNewSize.Width()) / GetSizePixel().Width(),
static_cast<double>(rNewSize.Height()) / GetSizePixel().Height(),
nScaleFlag);
}
return true;
}
bool BitmapEx::Rotate( Degree10 nAngle10, const Color& rFillColor )
{
if (maBitmap.IsEmpty())
return false;
const bool bTransRotate = ( COL_TRANSPARENT == rFillColor );
bool bRet = false;
if (bTransRotate)
{
bRet = maBitmap.Rotate(nAngle10, COL_BLACK);
if (maAlphaMask.IsEmpty())
{
maAlphaMask = Bitmap(GetSizePixel(), vcl::PixelFormat::N8_BPP, &Bitmap::GetGreyPalette(256));
maAlphaMask.Erase( 0 );
}
if (bRet && !maAlphaMask.IsEmpty())
maAlphaMask.Rotate(nAngle10, COL_ALPHA_TRANSPARENT);
}
else
{
bRet = maBitmap.Rotate( nAngle10, rFillColor );
if (bRet && !maAlphaMask.IsEmpty())
maAlphaMask.Rotate(nAngle10, COL_ALPHA_TRANSPARENT);
}
maBitmapSize = maBitmap.GetSizePixel();
SAL_WARN_IF(!maAlphaMask.IsEmpty() && maBitmap.GetSizePixel() != maAlphaMask.GetSizePixel(), "vcl",
"BitmapEx::Rotate(): size mismatch for bitmap and alpha mask.");
return bRet;
}
bool BitmapEx::Crop( const tools::Rectangle& rRectPixel )
{
if (maBitmap.IsEmpty())
return false;
bool bRet = maBitmap.Crop(rRectPixel);
if (bRet && !maAlphaMask.IsEmpty())
maAlphaMask.Crop(rRectPixel);
maBitmapSize = maBitmap.GetSizePixel();
SAL_WARN_IF(!maAlphaMask.IsEmpty() && maBitmap.GetSizePixel() != maAlphaMask.GetSizePixel(), "vcl",
"BitmapEx::Crop(): size mismatch for bitmap and alpha mask.");
return bRet;
}
bool BitmapEx::Convert( BmpConversion eConversion )
{
return !maBitmap.IsEmpty() && maBitmap.Convert( eConversion );
}
void BitmapEx::Expand(sal_Int32 nDX, sal_Int32 nDY, bool bExpandTransparent)
{
if (maBitmap.IsEmpty())
return;
bool bRet = maBitmap.Expand( nDX, nDY );
if ( bRet && !maAlphaMask.IsEmpty() )
{
Color aColor( bExpandTransparent ? COL_ALPHA_TRANSPARENT : COL_ALPHA_OPAQUE );
maAlphaMask.Expand( nDX, nDY, &aColor );
}
maBitmapSize = maBitmap.GetSizePixel();
SAL_WARN_IF(!maAlphaMask.IsEmpty() && maBitmap.GetSizePixel() != maAlphaMask.GetSizePixel(), "vcl",
"BitmapEx::Expand(): size mismatch for bitmap and alpha mask.");
}
bool BitmapEx::CopyPixel( const tools::Rectangle& rRectDst, const tools::Rectangle& rRectSrc,
const BitmapEx& rBmpExSrc )
{
if( maBitmap.IsEmpty() )
return false;
if (!maBitmap.CopyPixel( rRectDst, rRectSrc, rBmpExSrc.maBitmap ))
return false;
if( rBmpExSrc.IsAlpha() )
{
if( IsAlpha() )
// cast to use the optimized AlphaMask::CopyPixel
maAlphaMask.CopyPixel_AlphaOptimized( rRectDst, rRectSrc, rBmpExSrc.maAlphaMask );
else
{
sal_uInt8 nTransparencyOpaque = 0;
maAlphaMask = AlphaMask(GetSizePixel(), &nTransparencyOpaque);
maAlphaMask.CopyPixel( rRectDst, rRectSrc, rBmpExSrc.maAlphaMask );
}
}
else if (IsAlpha())
{
sal_uInt8 nTransparencyOpaque = 0;
const AlphaMask aAlphaSrc(rBmpExSrc.GetSizePixel(), &nTransparencyOpaque);
maAlphaMask.CopyPixel( rRectDst, rRectSrc, aAlphaSrc );
}
return true;
}
bool BitmapEx::Erase( const Color& rFillColor )
{
if (maBitmap.IsEmpty())
return false;
if (!maBitmap.Erase(rFillColor))
return false;
if (!maAlphaMask.IsEmpty())
{
// Respect transparency on fill color
if (rFillColor.IsTransparent())
maAlphaMask.Erase(255 - rFillColor.GetAlpha());
else
maAlphaMask.Erase(0);
}
return true;
}
void BitmapEx::Replace( const Color& rSearchColor, const Color& rReplaceColor )
{
if (!maBitmap.IsEmpty())
maBitmap.Replace( rSearchColor, rReplaceColor );
}
void BitmapEx::Replace( const Color* pSearchColors, const Color* pReplaceColors, size_t nColorCount )
{
if (!maBitmap.IsEmpty())
maBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, /*pTols*/nullptr );
}
bool BitmapEx::Adjust( short nLuminancePercent, short nContrastPercent,
short nChannelRPercent, short nChannelGPercent, short nChannelBPercent,
double fGamma, bool bInvert, bool msoBrightness )
{
return !maBitmap.IsEmpty() && maBitmap.Adjust( nLuminancePercent, nContrastPercent,
nChannelRPercent, nChannelGPercent, nChannelBPercent,
fGamma, bInvert, msoBrightness );
}
void BitmapEx::Draw( OutputDevice* pOutDev, const Point& rDestPt ) const
{
pOutDev->DrawBitmapEx( rDestPt, *this );
}
void BitmapEx::Draw( OutputDevice* pOutDev,
const Point& rDestPt, const Size& rDestSize ) const
{
pOutDev->DrawBitmapEx( rDestPt, rDestSize, *this );
}
BitmapEx BitmapEx::AutoScaleBitmap(BitmapEx const & aBitmap, const tools::Long aStandardSize)
{
Point aEmptyPoint(0,0);
double imgposX = 0;
double imgposY = 0;
BitmapEx aRet = aBitmap;
double imgOldWidth = aRet.GetSizePixel().Width();
double imgOldHeight = aRet.GetSizePixel().Height();
if (imgOldWidth >= aStandardSize || imgOldHeight >= aStandardSize)
{
sal_Int32 imgNewWidth = 0;
sal_Int32 imgNewHeight = 0;
if (imgOldWidth >= imgOldHeight)
{
imgNewWidth = aStandardSize;
imgNewHeight = sal_Int32(imgOldHeight / (imgOldWidth / aStandardSize) + 0.5);
imgposX = 0;
imgposY = (aStandardSize - (imgOldHeight / (imgOldWidth / aStandardSize) + 0.5)) / 2 + 0.5;
}
else
{
imgNewHeight = aStandardSize;
imgNewWidth = sal_Int32(imgOldWidth / (imgOldHeight / aStandardSize) + 0.5);
imgposY = 0;
imgposX = (aStandardSize - (imgOldWidth / (imgOldHeight / aStandardSize) + 0.5)) / 2 + 0.5;
}
Size aScaledSize( imgNewWidth, imgNewHeight );
aRet.Scale( aScaledSize, BmpScaleFlag::BestQuality );
}
else
{
imgposX = (aStandardSize - imgOldWidth) / 2 + 0.5;
imgposY = (aStandardSize - imgOldHeight) / 2 + 0.5;
}
Size aStdSize( aStandardSize, aStandardSize );
tools::Rectangle aRect(aEmptyPoint, aStdSize );
ScopedVclPtrInstance< VirtualDevice > aVirDevice(*Application::GetDefaultDevice());
aVirDevice->SetOutputSizePixel( aStdSize );
aVirDevice->SetFillColor( COL_TRANSPARENT );
aVirDevice->SetLineColor( COL_TRANSPARENT );
// Draw a rect into virDevice
aVirDevice->DrawRect( aRect );
Point aPointPixel( static_cast<tools::Long>(imgposX), static_cast<tools::Long>(imgposY) );
aVirDevice->DrawBitmapEx( aPointPixel, aRet );
aRet = aVirDevice->GetBitmapEx( aEmptyPoint, aStdSize );
return aRet;
}
sal_uInt8 BitmapEx::GetAlpha(sal_Int32 nX, sal_Int32 nY) const
{
if(maBitmap.IsEmpty())
return 0;
if (nX < 0 || nX >= GetSizePixel().Width() || nY < 0 || nY >= GetSizePixel().Height())
return 0;
if (maBitmap.getPixelFormat() == vcl::PixelFormat::N32_BPP)
return GetPixelColor(nX, nY).GetAlpha();
sal_uInt8 nAlpha(0);
if (maAlphaMask.IsEmpty())
{
// Not transparent, ergo all covered
nAlpha = 255;
}
else
{
BitmapScopedReadAccess pRead(maAlphaMask);
if(pRead)
{
const BitmapColor aBitmapColor(pRead->GetPixel(nY, nX));
nAlpha = aBitmapColor.GetIndex();
}
}
return nAlpha;
}
Color BitmapEx::GetPixelColor(sal_Int32 nX, sal_Int32 nY) const
{
BitmapScopedReadAccess pReadAccess( maBitmap );
assert(pReadAccess);
BitmapColor aColor = pReadAccess->GetColor(nY, nX);
if (IsAlpha())
{
AlphaMask aAlpha = GetAlphaMask();
BitmapScopedReadAccess pAlphaReadAccess(aAlpha);
aColor.SetAlpha(pAlphaReadAccess->GetPixel(nY, nX).GetIndex());
}
else if (maBitmap.getPixelFormat() != vcl::PixelFormat::N32_BPP)
{
aColor.SetAlpha(255);
}
return aColor;
}
// Shift alpha transparent pixels between cppcanvas/ implementations
// and vcl in a generally grotesque and under-performing fashion
bool BitmapEx::Create( const css::uno::Reference< css::rendering::XBitmapCanvas > &xBitmapCanvas,
const Size &rSize )
{
uno::Reference< beans::XFastPropertySet > xFastPropertySet( xBitmapCanvas, uno::UNO_QUERY );
if( xFastPropertySet )
{
// 0 means get BitmapEx
uno::Any aAny = xFastPropertySet->getFastPropertyValue( 0 );
std::unique_ptr<BitmapEx> xBitmapEx(reinterpret_cast<BitmapEx*>(*o3tl::doAccess<sal_Int64>(aAny)));
if( xBitmapEx )
{
*this = *xBitmapEx;
return true;
}
}
std::shared_ptr<SalBitmap> pSalBmp;
std::shared_ptr<SalBitmap> pSalMask;
pSalBmp = ImplGetSVData()->mpDefInst->CreateSalBitmap();
Size aLocalSize(rSize);
if( pSalBmp->Create( xBitmapCanvas, aLocalSize ) )
{
pSalMask = ImplGetSVData()->mpDefInst->CreateSalBitmap();
if ( pSalMask->Create( xBitmapCanvas, aLocalSize, true ) )
{
*this = BitmapEx(Bitmap(std::move(pSalBmp)), Bitmap(std::move(pSalMask)) );
return true;
}
else
{
*this = BitmapEx(Bitmap(std::move(pSalBmp)));
return true;
}
}
return false;
}
namespace
{
Bitmap impTransformBitmap(
const Bitmap& rSource,
const Size& rDestinationSize,
const basegfx::B2DHomMatrix& rTransform,
bool bSmooth, bool bAlphaMask)
{
Bitmap aDestination(rDestinationSize, vcl::PixelFormat::N24_BPP);
BitmapScopedWriteAccess xWrite(aDestination);
if(xWrite)
{
BitmapScopedReadAccess xRead(rSource);
if (xRead)
{
const Size aDestinationSizePixel(aDestination.GetSizePixel());
// tdf#157795 set color to black outside of bitmap bounds
// Due to commit 81994cb2b8b32453a92bcb011830fcb884f22ff3,
// transparent areas are now black instead of white.
// tdf#160831 only set outside color to black for alpha masks
// The outside color still needs to be white for the content
// so only apply the fix for tdf#157795 to the alpha mask.
const BitmapColor aOutside = bAlphaMask ? BitmapColor(0x0, 0x0, 0x0) : BitmapColor(0xff, 0xff, 0xff);
for(tools::Long y(0); y < aDestinationSizePixel.getHeight(); y++)
{
Scanline pScanline = xWrite->GetScanline( y );
for(tools::Long x(0); x < aDestinationSizePixel.getWidth(); x++)
{
const basegfx::B2DPoint aSourceCoor(rTransform * basegfx::B2DPoint(x, y));
if(bSmooth)
{
xWrite->SetPixelOnData(
pScanline,
x,
xRead->GetInterpolatedColorWithFallback(
aSourceCoor.getY(),
aSourceCoor.getX(),
aOutside));
}
else
{
// this version does the correct <= 0.0 checks, so no need
// to do the static_cast< sal_Int32 > self and make an error
xWrite->SetPixelOnData(
pScanline,
x,
xRead->GetColorWithFallback(
aSourceCoor.getY(),
aSourceCoor.getX(),
aOutside));
}
}
}
}
}
xWrite.reset();
rSource.AdaptBitCount(aDestination);
return aDestination;
}
/// Decides if rTransformation needs smoothing or not (e.g. 180 deg rotation doesn't need it).
bool implTransformNeedsSmooth(const basegfx::B2DHomMatrix& rTransformation)
{
basegfx::B2DVector aScale, aTranslate;
double fRotate, fShearX;
rTransformation.decompose(aScale, aTranslate, fRotate, fShearX);
if (aScale != basegfx::B2DVector(1, 1))
{
return true;
}
fRotate = fmod( fRotate, 2 * M_PI );
if (fRotate < 0)
{
fRotate += 2 * M_PI;
}
if (!rtl::math::approxEqual(fRotate, 0)
&& !rtl::math::approxEqual(fRotate, M_PI_2)
&& !rtl::math::approxEqual(fRotate, M_PI)
&& !rtl::math::approxEqual(fRotate, 3 * M_PI_2))
{
return true;
}
if (!rtl::math::approxEqual(fShearX, 0))
{
return true;
}
return false;
}
} // end of anonymous namespace
BitmapEx BitmapEx::TransformBitmapEx(
double fWidth,
double fHeight,
const basegfx::B2DHomMatrix& rTransformation) const
{
if(fWidth <= 1 || fHeight <= 1)
return BitmapEx();
// force destination to 24 bit, we want to smooth output
const Size aDestinationSize(basegfx::fround<tools::Long>(fWidth), basegfx::fround<tools::Long>(fHeight));
bool bSmooth = implTransformNeedsSmooth(rTransformation);
const Bitmap aDestination(impTransformBitmap(GetBitmap(), aDestinationSize, rTransformation, bSmooth, false));
// create mask
if(IsAlpha())
{
const Bitmap aAlpha(impTransformBitmap(GetAlphaMask().GetBitmap(), aDestinationSize, rTransformation, bSmooth, true));
return BitmapEx(aDestination, AlphaMask(aAlpha));
}
return BitmapEx(aDestination);
}
BitmapEx BitmapEx::getTransformed(
const basegfx::B2DHomMatrix& rTransformation,
const basegfx::B2DRange& rVisibleRange,
double fMaximumArea) const
{
if (IsEmpty())
return BitmapEx();
const sal_uInt32 nSourceWidth(GetSizePixel().Width());
const sal_uInt32 nSourceHeight(GetSizePixel().Height());
if (!nSourceWidth || !nSourceHeight)
return BitmapEx();
// Get aOutlineRange
basegfx::B2DRange aOutlineRange(0.0, 0.0, 1.0, 1.0);
aOutlineRange.transform(rTransformation);
// create visible range from it by moving from relative to absolute
basegfx::B2DRange aVisibleRange(rVisibleRange);
aVisibleRange.transform(
basegfx::utils::createScaleTranslateB2DHomMatrix(
aOutlineRange.getRange(),
aOutlineRange.getMinimum()));
// get target size (which is visible range's size)
double fWidth(aVisibleRange.getWidth());
double fHeight(aVisibleRange.getHeight());
if (fWidth < 1.0 || fHeight < 1.0)
return BitmapEx();
// test if discrete size (pixel) maybe too big and limit it
const double fArea(fWidth * fHeight);
const bool bNeedToReduce(basegfx::fTools::more(fArea, fMaximumArea));
double fReduceFactor(1.0);
if(bNeedToReduce)
{
fReduceFactor = sqrt(fMaximumArea / fArea);
fWidth *= fReduceFactor;
fHeight *= fReduceFactor;
}
// Build complete transform from source pixels to target pixels.
// Start by scaling from source pixel size to unit coordinates
basegfx::B2DHomMatrix aTransform(
basegfx::utils::createScaleB2DHomMatrix(
1.0 / nSourceWidth,
1.0 / nSourceHeight));
// multiply with given transform which leads from unit coordinates inside
// aOutlineRange
aTransform = rTransformation * aTransform;
// subtract top-left of absolute VisibleRange
aTransform.translate(
-aVisibleRange.getMinX(),
-aVisibleRange.getMinY());
// scale to target pixels (if needed)
if(bNeedToReduce)
{
aTransform.scale(fReduceFactor, fReduceFactor);
}
// invert to get transformation from target pixel coordinates to source pixels
aTransform.invert();
// create bitmap using source, destination and linear back-transformation
return TransformBitmapEx(fWidth, fHeight, aTransform);
}
namespace
{
class BufferedData_ModifiedBitmapEx : public basegfx::SystemDependentData
{
Bitmap maChangedBitmap;
basegfx::BColorModifierStack maBColorModifierStack;
public:
BufferedData_ModifiedBitmapEx(
const Bitmap& rChangedBitmap,
const basegfx::BColorModifierStack& rBColorModifierStack)
: basegfx::SystemDependentData(
Application::GetSystemDependentDataManager(),
basegfx::SDD_Type::SDDType_ModifiedBitmapEx)
, maChangedBitmap(rChangedBitmap)
, maBColorModifierStack(rBColorModifierStack)
{
}
const Bitmap& getChangedBitmap() const { return maChangedBitmap; }
const basegfx::BColorModifierStack& getBColorModifierStack() const { return maBColorModifierStack; }
virtual sal_Int64 estimateUsageInBytes() const override;
};
sal_Int64 BufferedData_ModifiedBitmapEx::estimateUsageInBytes() const
{
return maChangedBitmap.GetSizeBytes();
}
}
BitmapEx BitmapEx::ModifyBitmapEx(const basegfx::BColorModifierStack& rBColorModifierStack) const
{
if (0 == rBColorModifierStack.count())
{
// no modifiers, done
return *this;
}
// check for BColorModifier_replace at the top of the stack
const basegfx::BColorModifierSharedPtr& rLastModifier(rBColorModifierStack.getBColorModifier(rBColorModifierStack.count() - 1));
const basegfx::BColorModifier_replace* pLastModifierReplace(dynamic_cast<const basegfx::BColorModifier_replace*>(rLastModifier.get()));
if (nullptr != pLastModifierReplace && !IsAlpha())
{
// at the top of the stack we have a BColorModifier_replace -> no Bitmap needed,
// representation can be replaced by filled colored polygon. signal the caller
// about that by returning empty BitmapEx
return BitmapEx();
}
const basegfx::SystemDependentDataHolder* pHolder(GetBitmap().accessSystemDependentDataHolder());
std::shared_ptr<BufferedData_ModifiedBitmapEx> pBufferedData_ModifiedBitmapEx;
if (nullptr != pHolder)
{
// try to access SystemDependentDataHolder and buffered data
pBufferedData_ModifiedBitmapEx = std::static_pointer_cast<BufferedData_ModifiedBitmapEx>(
pHolder->getSystemDependentData(basegfx::SDD_Type::SDDType_ModifiedBitmapEx));
if (nullptr != pBufferedData_ModifiedBitmapEx
&& !(pBufferedData_ModifiedBitmapEx->getBColorModifierStack() == rBColorModifierStack))
{
// BColorModifierStack is different -> data invalid
pBufferedData_ModifiedBitmapEx = nullptr;
}
if (nullptr != pBufferedData_ModifiedBitmapEx)
{
// found existing instance of modified Bitmap, return reused/buffered result
if(IsAlpha())
return BitmapEx(pBufferedData_ModifiedBitmapEx->getChangedBitmap(), GetAlphaMask());
return BitmapEx(pBufferedData_ModifiedBitmapEx->getChangedBitmap());
}
}
// have to create modified Bitmap
Bitmap aChangedBitmap(GetBitmap());
if (nullptr != pLastModifierReplace)
{
// special case -> we have BColorModifier_replace but Alpha channel
if (vcl::isPalettePixelFormat(aChangedBitmap.getPixelFormat()))
{
// For e.g. 8bit Bitmaps, the nearest color to the given erase color is
// determined and used -> this may be different from what is wanted here.
// Better create a new bitmap with the needed color explicitly.
BitmapScopedReadAccess xReadAccess(aChangedBitmap);
SAL_WARN_IF(!xReadAccess, "vcl", "Got no Bitmap ReadAccess ?!?");
if(xReadAccess)
{
BitmapPalette aNewPalette(xReadAccess->GetPalette());
aNewPalette[0] = BitmapColor(Color(pLastModifierReplace->getBColor()));
aChangedBitmap = Bitmap(
aChangedBitmap.GetSizePixel(),
aChangedBitmap.getPixelFormat(),
&aNewPalette);
}
}
else
{
// clear bitmap with dest color
aChangedBitmap.Erase(Color(pLastModifierReplace->getBColor()));
}
}
else
{
BitmapScopedWriteAccess xContent(aChangedBitmap);
if(xContent)
{
const double fConvertColor(1.0 / 255.0);
if(xContent->HasPalette())
{
const sal_uInt16 nCount(xContent->GetPaletteEntryCount());
for(sal_uInt16 b(0); b < nCount; b++)
{
const BitmapColor& rCol = xContent->GetPaletteColor(b);
const basegfx::BColor aBSource(
rCol.GetRed() * fConvertColor,
rCol.GetGreen() * fConvertColor,
rCol.GetBlue() * fConvertColor);
const basegfx::BColor aBDest(rBColorModifierStack.getModifiedColor(aBSource));
xContent->SetPaletteColor(b, BitmapColor(Color(aBDest)));
}
}
else if(ScanlineFormat::N24BitTcBgr == xContent->GetScanlineFormat())
{
for(tools::Long y(0); y < xContent->Height(); y++)
{
Scanline pScan = xContent->GetScanline(y);
for(tools::Long x(0); x < xContent->Width(); x++)
{
const basegfx::BColor aBSource(
*(pScan + 2)* fConvertColor,
*(pScan + 1) * fConvertColor,
*pScan * fConvertColor);
const basegfx::BColor aBDest(rBColorModifierStack.getModifiedColor(aBSource));
*pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0);
}
}
}
else if(ScanlineFormat::N24BitTcRgb == xContent->GetScanlineFormat())
{
for(tools::Long y(0); y < xContent->Height(); y++)
{
Scanline pScan = xContent->GetScanline(y);
for(tools::Long x(0); x < xContent->Width(); x++)
{
const basegfx::BColor aBSource(
*pScan * fConvertColor,
*(pScan + 1) * fConvertColor,
*(pScan + 2) * fConvertColor);
const basegfx::BColor aBDest(rBColorModifierStack.getModifiedColor(aBSource));
*pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0);
}
}
}
else
{
for(tools::Long y(0); y < xContent->Height(); y++)
{
Scanline pScanline = xContent->GetScanline( y );
for(tools::Long x(0); x < xContent->Width(); x++)
{
const BitmapColor aBMCol(xContent->GetColor(y, x));
const basegfx::BColor aBSource(
static_cast<double>(aBMCol.GetRed()) * fConvertColor,
static_cast<double>(aBMCol.GetGreen()) * fConvertColor,
static_cast<double>(aBMCol.GetBlue()) * fConvertColor);
const basegfx::BColor aBDest(rBColorModifierStack.getModifiedColor(aBSource));
xContent->SetPixelOnData(pScanline, x, BitmapColor(Color(aBDest)));
}
}
}
}
}
if (nullptr != pHolder)
{
// create new BufferedData_ModifiedBitmapEx (should be nullptr here)
if (nullptr == pBufferedData_ModifiedBitmapEx)
{
pBufferedData_ModifiedBitmapEx = std::make_shared<BufferedData_ModifiedBitmapEx>(aChangedBitmap, rBColorModifierStack);
}
// register it, evtl. it's a new one
basegfx::SystemDependentData_SharedPtr r2(pBufferedData_ModifiedBitmapEx);
const_cast<basegfx::SystemDependentDataHolder*>(pHolder)->addOrReplaceSystemDependentData(r2);
}
// return result
if(IsAlpha())
return BitmapEx(aChangedBitmap, GetAlphaMask());
return BitmapEx(aChangedBitmap);
}
BitmapEx createBlendFrame(
const Size& rSize,
sal_uInt8 nAlpha,
Color aColorTopLeft,
Color aColorBottomRight)
{
const sal_uInt32 nW(rSize.Width());
const sal_uInt32 nH(rSize.Height());
if(nW || nH)
{
Color aColTopRight(aColorTopLeft);
Color aColBottomLeft(aColorTopLeft);
const sal_uInt32 nDE(nW + nH);
aColTopRight.Merge(aColorBottomRight, 255 - sal_uInt8((nW * 255) / nDE));
aColBottomLeft.Merge(aColorBottomRight, 255 - sal_uInt8((nH * 255) / nDE));
return createBlendFrame(rSize, nAlpha, aColorTopLeft, aColTopRight, aColorBottomRight, aColBottomLeft);
}
return BitmapEx();
}
BitmapEx createBlendFrame(
const Size& rSize,
sal_uInt8 nAlpha,
Color aColorTopLeft,
Color aColorTopRight,
Color aColorBottomRight,
Color aColorBottomLeft)
{
// FIXME the call sites are actually passing in transparency
nAlpha = 255 - nAlpha;
BlendFrameCache* pBlendFrameCache = ImplGetBlendFrameCache();
if(pBlendFrameCache->m_aLastSize == rSize
&& pBlendFrameCache->m_nLastAlpha == nAlpha
&& pBlendFrameCache->m_aLastColorTopLeft == aColorTopLeft
&& pBlendFrameCache->m_aLastColorTopRight == aColorTopRight
&& pBlendFrameCache->m_aLastColorBottomRight == aColorBottomRight
&& pBlendFrameCache->m_aLastColorBottomLeft == aColorBottomLeft)
{
return pBlendFrameCache->m_aLastResult;
}
pBlendFrameCache->m_aLastSize = rSize;
pBlendFrameCache->m_nLastAlpha = nAlpha;
pBlendFrameCache->m_aLastColorTopLeft = aColorTopLeft;
pBlendFrameCache->m_aLastColorTopRight = aColorTopRight;
pBlendFrameCache->m_aLastColorBottomRight = aColorBottomRight;
pBlendFrameCache->m_aLastColorBottomLeft = aColorBottomLeft;
pBlendFrameCache->m_aLastResult.Clear();
const tools::Long nW(rSize.Width());
const tools::Long nH(rSize.Height());
if(nW > 1 && nH > 1)
{
sal_uInt8 aEraseTrans(0xff);
Bitmap aContent(rSize, vcl::PixelFormat::N24_BPP);
AlphaMask aAlpha(rSize, &aEraseTrans);
aContent.Erase(COL_BLACK);
BitmapScopedWriteAccess pContent(aContent);
BitmapScopedWriteAccess pAlpha(aAlpha);
if(pContent && pAlpha)
{
tools::Long x(0);
tools::Long y(0);
Scanline pScanContent = pContent->GetScanline( 0 );
Scanline pScanAlpha = pContent->GetScanline( 0 );
// x == 0, y == 0, top-left corner
pContent->SetPixelOnData(pScanContent, 0, aColorTopLeft);
pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha));
// y == 0, top line left to right
for(x = 1; x < nW - 1; x++)
{
Color aMix(aColorTopLeft);
aMix.Merge(aColorTopRight, 255 - sal_uInt8((x * 255) / nW));
pContent->SetPixelOnData(pScanContent, x, aMix);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
// x == nW - 1, y == 0, top-right corner
// #i123690# Caution! When nW is 1, x == nW is possible (!)
if(x < nW)
{
pContent->SetPixelOnData(pScanContent, x, aColorTopRight);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
// x == 0 and nW - 1, left and right line top-down
for(y = 1; y < nH - 1; y++)
{
pScanContent = pContent->GetScanline( y );
pScanAlpha = pContent->GetScanline( y );
Color aMixA(aColorTopLeft);
aMixA.Merge(aColorBottomLeft, 255 - sal_uInt8((y * 255) / nH));
pContent->SetPixelOnData(pScanContent, 0, aMixA);
pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha));
// #i123690# Caution! When nW is 1, x == nW is possible (!)
if(x < nW)
{
Color aMixB(aColorTopRight);
aMixB.Merge(aColorBottomRight, 255 - sal_uInt8((y * 255) / nH));
pContent->SetPixelOnData(pScanContent, x, aMixB);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
}
// #i123690# Caution! When nH is 1, y == nH is possible (!)
if(y < nH)
{
// x == 0, y == nH - 1, bottom-left corner
pContent->SetPixelOnData(pScanContent, 0, aColorBottomLeft);
pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha));
// y == nH - 1, bottom line left to right
for(x = 1; x < nW - 1; x++)
{
Color aMix(aColorBottomLeft);
aMix.Merge(aColorBottomRight, 255 - sal_uInt8(((x - 0)* 255) / nW));
pContent->SetPixelOnData(pScanContent, x, aMix);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
// x == nW - 1, y == nH - 1, bottom-right corner
// #i123690# Caution! When nW is 1, x == nW is possible (!)
if(x < nW)
{
pContent->SetPixelOnData(pScanContent, x, aColorBottomRight);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
}
pContent.reset();
pAlpha.reset();
pBlendFrameCache->m_aLastResult = BitmapEx(aContent, aAlpha);
}
}
return pBlendFrameCache->m_aLastResult;
}
void BitmapEx::Replace(const Color& rSearchColor,
const Color& rReplaceColor,
sal_uInt8 nTolerance)
{
maBitmap.Replace(rSearchColor, rReplaceColor, nTolerance);
}
void BitmapEx::Replace( const Color* pSearchColors,
const Color* pReplaceColors,
size_t nColorCount,
sal_uInt8 const * pTols )
{
maBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, pTols );
}
void BitmapEx::ReplaceTransparency(const Color& rColor)
{
if( IsAlpha() )
{
maBitmap.Replace( GetAlphaMask(), rColor );
maAlphaMask = Bitmap();
maBitmapSize = maBitmap.GetSizePixel();
}
}
static Bitmap DetectEdges( const Bitmap& rBmp )
{
constexpr sal_uInt8 cEdgeDetectThreshold = 128;
const Size aSize( rBmp.GetSizePixel() );
if( ( aSize.Width() <= 2 ) || ( aSize.Height() <= 2 ) )
return rBmp;
Bitmap aWorkBmp( rBmp );
if( !aWorkBmp.Convert( BmpConversion::N8BitGreys ) )
return rBmp;
ScopedVclPtr<VirtualDevice> pVirDev(VclPtr<VirtualDevice>::Create());
pVirDev->SetOutputSizePixel(aSize);
BitmapScopedReadAccess pReadAcc(aWorkBmp);
if( !pReadAcc )
return rBmp;
const tools::Long nWidth = aSize.Width();
const tools::Long nWidth2 = nWidth - 2;
const tools::Long nHeight = aSize.Height();
const tools::Long nHeight2 = nHeight - 2;
const tools::Long lThres2 = static_cast<tools::Long>(cEdgeDetectThreshold) * cEdgeDetectThreshold;
tools::Long nSum1;
tools::Long nSum2;
tools::Long lGray;
// initialize border with white pixels
pVirDev->SetLineColor( COL_WHITE );
pVirDev->DrawLine( Point(), Point( nWidth - 1, 0L ) );
pVirDev->DrawLine( Point( nWidth - 1, 0L ), Point( nWidth - 1, nHeight - 1 ) );
pVirDev->DrawLine( Point( nWidth - 1, nHeight - 1 ), Point( 0L, nHeight - 1 ) );
pVirDev->DrawLine( Point( 0, nHeight - 1 ), Point() );
for( tools::Long nY = 0, nY1 = 1, nY2 = 2; nY < nHeight2; nY++, nY1++, nY2++ )
{
Scanline pScanlineRead = pReadAcc->GetScanline( nY );
Scanline pScanlineRead1 = pReadAcc->GetScanline( nY1 );
Scanline pScanlineRead2 = pReadAcc->GetScanline( nY2 );
for( tools::Long nX = 0, nXDst = 1, nXTmp; nX < nWidth2; nX++, nXDst++ )
{
nXTmp = nX;
nSum2 = pReadAcc->GetIndexFromData( pScanlineRead, nXTmp++ );
nSum1 = -nSum2;
nSum2 += static_cast<tools::Long>(pReadAcc->GetIndexFromData( pScanlineRead, nXTmp++ )) << 1;
lGray = pReadAcc->GetIndexFromData( pScanlineRead, nXTmp );
nSum1 += lGray;
nSum2 += lGray;
nSum1 += static_cast<tools::Long>(pReadAcc->GetIndexFromData( pScanlineRead1, nXTmp )) << 1;
nXTmp -= 2;
nSum1 -= static_cast<tools::Long>(pReadAcc->GetIndexFromData( pScanlineRead1, nXTmp )) << 1;
lGray = -static_cast<tools::Long>(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp++ ));
nSum1 += lGray;
nSum2 += lGray;
nSum2 -= static_cast<tools::Long>(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp++ )) << 1;
lGray = static_cast<tools::Long>(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp ));
nSum1 += lGray;
nSum2 -= lGray;
if( ( nSum1 * nSum1 + nSum2 * nSum2 ) < lThres2 )
pVirDev->DrawPixel( Point(nXDst, nY), COL_WHITE );
else
pVirDev->DrawPixel( Point(nXDst, nY), COL_BLACK );
}
}
pReadAcc.reset();
Bitmap aRetBmp = pVirDev->GetBitmap(Point(0,0), aSize);
if( aRetBmp.IsEmpty() )
aRetBmp = rBmp;
else
{
aRetBmp.SetPrefMapMode( rBmp.GetPrefMapMode() );
aRetBmp.SetPrefSize( rBmp.GetPrefSize() );
}
return aRetBmp;
}
/** Get contours in image */
tools::Polygon BitmapEx::GetContour( bool bContourEdgeDetect,
const tools::Rectangle* pWorkRectPixel )
{
Bitmap aWorkBmp;
tools::Rectangle aWorkRect( Point(), maBitmap.GetSizePixel() );
if( pWorkRectPixel )
aWorkRect.Intersection( *pWorkRectPixel );
aWorkRect.Normalize();
if ((aWorkRect.GetWidth() <= 4) || (aWorkRect.GetHeight() <= 4))
return tools::Polygon();
// if the flag is set, we need to detect edges
if( bContourEdgeDetect )
aWorkBmp = DetectEdges( maBitmap );
else
aWorkBmp = maBitmap;
BitmapScopedReadAccess pAcc(aWorkBmp);
const tools::Long nWidth = pAcc ? pAcc->Width() : 0;
const tools::Long nHeight = pAcc ? pAcc->Height() : 0;
if (!pAcc || !nWidth || !nHeight)
return tools::Polygon();
const tools::Long nStartX1 = aWorkRect.Left() + 1;
const tools::Long nEndX1 = aWorkRect.Right();
const tools::Long nStartX2 = nEndX1 - 1;
const tools::Long nStartY1 = aWorkRect.Top() + 1;
const tools::Long nEndY1 = aWorkRect.Bottom();
sal_uInt16 nPolyPos = 0;
// tdf#161833 treat semi-transparent pixels as opaque
// Limiting the contour wrapping polygon to only opaque pixels
// causes clipping of any shadows or other semi-transparent
// areas in the image. So, instead of testing for fully opaque
// pixels, treat pixels that are not fully transparent as opaque.
// tdf#162062 only apply fix for tdf#161833 if there is a palette
const BitmapColor aTransparent = pAcc->GetBestMatchingColor( pAcc->HasPalette() ? COL_ALPHA_TRANSPARENT : COL_ALPHA_OPAQUE );
std::unique_ptr<Point[]> pPoints1;
std::unique_ptr<Point[]> pPoints2;
pPoints1.reset(new Point[ nHeight ]);
pPoints2.reset(new Point[ nHeight ]);
for (tools::Long nY = nStartY1; nY < nEndY1; nY++ )
{
tools::Long nX = nStartX1;
Scanline pScanline = pAcc->GetScanline( nY );
// scan row from left to right
while( nX < nEndX1 )
{
if( aTransparent != pAcc->GetPixelFromData( pScanline, nX ) )
{
pPoints1[ nPolyPos ] = Point( nX, nY );
nX = nStartX2;
// this loop always breaks eventually as there is at least one pixel
while( true )
{
if( aTransparent != pAcc->GetPixelFromData( pScanline, nX ) )
{
pPoints2[ nPolyPos ] = Point( nX, nY );
break;
}
nX--;
}
nPolyPos++;
break;
}
nX++;
}
}
const sal_uInt16 nNewSize1 = nPolyPos << 1;
tools::Polygon aRetPoly(nPolyPos, pPoints1.get());
aRetPoly.SetSize( nNewSize1 + 1 );
aRetPoly[ nNewSize1 ] = aRetPoly[ 0 ];
for( sal_uInt16 j = nPolyPos; nPolyPos < nNewSize1; )
{
aRetPoly[ nPolyPos++ ] = pPoints2[ --j ];
}
Size const& rPrefSize = aWorkBmp.GetPrefSize();
const double fFactorX = static_cast<double>(rPrefSize.Width()) / nWidth;
const double fFactorY = static_cast<double>(rPrefSize.Height()) / nHeight;
if( ( fFactorX != 0. ) && ( fFactorY != 0. ) )
aRetPoly.Scale( fFactorX, fFactorY );
return aRetPoly;
}
void BitmapEx::ChangeColorAlpha( sal_uInt8 cIndexFrom, sal_Int8 nAlphaTo )
{
AlphaMask aAlphaMask(GetAlphaMask());
BitmapScopedWriteAccess pAlphaWriteAccess(aAlphaMask);
BitmapScopedReadAccess pReadAccess(maBitmap);
assert( pReadAccess.get() && pAlphaWriteAccess.get() );
if ( !(pReadAccess.get() && pAlphaWriteAccess.get()) )
return;
for ( tools::Long nY = 0; nY < pReadAccess->Height(); nY++ )
{
Scanline pScanline = pAlphaWriteAccess->GetScanline( nY );
Scanline pScanlineRead = pReadAccess->GetScanline( nY );
for ( tools::Long nX = 0; nX < pReadAccess->Width(); nX++ )
{
const sal_uInt8 cIndex = pReadAccess->GetPixelFromData( pScanlineRead, nX ).GetIndex();
if ( cIndex == cIndexFrom )
pAlphaWriteAccess->SetPixelOnData( pScanline, nX, BitmapColor(nAlphaTo) );
}
}
*this = BitmapEx( GetBitmap(), aAlphaMask );
}
void BitmapEx::AdjustTransparency(sal_uInt8 cTrans)
{
AlphaMask aAlpha;
if (!IsAlpha())
{
aAlpha = AlphaMask(GetSizePixel(), &cTrans);
}
else
{
aAlpha = GetAlphaMask();
BitmapScopedWriteAccess pA(aAlpha);
assert(pA);
if( !pA )
return;
sal_uLong nTrans = cTrans;
const tools::Long nWidth = pA->Width(), nHeight = pA->Height();
if( pA->GetScanlineFormat() == ScanlineFormat::N8BitPal )
{
for( tools::Long nY = 0; nY < nHeight; nY++ )
{
Scanline pAScan = pA->GetScanline( nY );
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
sal_uLong nNewTrans = nTrans + (255 - *pAScan);
// clamp to 255
nNewTrans = ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans;
*pAScan++ = static_cast<sal_uInt8>( 255 - nNewTrans );
}
}
}
else
{
BitmapColor aAlphaValue( 0 );
for( tools::Long nY = 0; nY < nHeight; nY++ )
{
Scanline pScanline = pA->GetScanline( nY );
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
sal_uLong nNewTrans = nTrans + (255 - pA->GetIndexFromData( pScanline, nX ));
// clamp to 255
nNewTrans = ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans;
// convert back to alpha
aAlphaValue.SetIndex( static_cast<sal_uInt8>(255 - nNewTrans) );
pA->SetPixelOnData( pScanline, nX, aAlphaValue );
}
}
}
}
*this = BitmapEx( GetBitmap(), aAlpha );
}
void BitmapEx::CombineMaskOr(Color maskColor, sal_uInt8 nTol)
{
AlphaMask aNewMask = maBitmap.CreateAlphaMask( maskColor, nTol );
if ( IsAlpha() )
aNewMask.AlphaCombineOr( maAlphaMask );
maAlphaMask = std::move(aNewMask);
}
/**
* Retrieves the color model data we need for the XImageConsumer stuff.
*/
void BitmapEx::GetColorModel(css::uno::Sequence< sal_Int32 >& rRGBPalette,
sal_uInt32& rnRedMask, sal_uInt32& rnGreenMask, sal_uInt32& rnBlueMask, sal_uInt32& rnAlphaMask, sal_uInt32& rnTransparencyIndex,
sal_uInt32& rnWidth, sal_uInt32& rnHeight, sal_uInt8& rnBitCount)
{
BitmapScopedReadAccess pReadAccess( maBitmap );
assert( pReadAccess );
if( pReadAccess->HasPalette() )
{
sal_uInt16 nPalCount = pReadAccess->GetPaletteEntryCount();
if( nPalCount )
{
rRGBPalette = css::uno::Sequence< sal_Int32 >( nPalCount + 1 );
sal_Int32* pTmp = rRGBPalette.getArray();
for( sal_uInt32 i = 0; i < nPalCount; i++, pTmp++ )
{
const BitmapColor& rCol = pReadAccess->GetPaletteColor( static_cast<sal_uInt16>(i) );
*pTmp = static_cast<sal_Int32>(rCol.GetRed()) << sal_Int32(24);
*pTmp |= static_cast<sal_Int32>(rCol.GetGreen()) << sal_Int32(16);
*pTmp |= static_cast<sal_Int32>(rCol.GetBlue()) << sal_Int32(8);
*pTmp |= sal_Int32(0x000000ffL);
}
if( IsAlpha() )
{
// append transparent entry
*pTmp = sal_Int32(0xffffff00L);
rnTransparencyIndex = nPalCount;
nPalCount++;
}
else
rnTransparencyIndex = 0;
}
}
else
{
rnRedMask = 0xff000000UL;
rnGreenMask = 0x00ff0000UL;
rnBlueMask = 0x0000ff00UL;
rnAlphaMask = 0x000000ffUL;
rnTransparencyIndex = 0;
}
rnWidth = pReadAccess->Width();
rnHeight = pReadAccess->Height();
rnBitCount = pReadAccess->GetBitCount();
}
void BitmapEx::DumpAsPng(const char* pFileName) const
{
OUString sPath;
if (pFileName)
{
sPath = OUString::fromUtf8(pFileName);
}
else if (const char* pEnv = std::getenv("VCL_DUMP_BMP_PATH"))
{
sPath = OUString::fromUtf8(pEnv);
}
else
{
sPath = "file:///tmp/bitmap.png";
}
SvFileStream aStream(sPath, StreamMode::STD_READWRITE | StreamMode::TRUNC);
assert(aStream.good());
vcl::PngImageWriter aWriter(aStream);
aWriter.write(*this);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'Intersection' is required to be utilized.