/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <vcl/gradient.hxx>
#include <vcl/svapp.hxx>
#include <headless/BitmapHelper.hxx>
#include <headless/CairoCommon.hxx>
#include <vcl/cairo.hxx>
#include <vcl/BitmapTools.hxx>
#include <SalGradient.hxx>
#include <tools/helpers.hxx>
#include <basegfx/utils/canvastools.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/range/b2irange.hxx>
#include <comphelper/configuration.hxx>
#include <sal/log.hxx>
#include <osl/module.h>
#if CAIRO_VERSION < CAIRO_VERSION_ENCODE(1, 12, 0)
#error "require at least cairo 1.12.0"
#endif
void dl_cairo_surface_set_device_scale(cairo_surface_t* surface, double x_scale, double y_scale)
{
#if !HAVE_DLAPI || !defined(SYSTEM_CAIRO)
cairo_surface_set_device_scale(surface, x_scale, y_scale);
#else
static auto func = reinterpret_cast<void (*)(cairo_surface_t*, double, double)>(
osl_getAsciiFunctionSymbol(nullptr, "cairo_surface_set_device_scale"));
if (func)
func(surface, x_scale, y_scale);
#endif
}
void dl_cairo_surface_get_device_scale(cairo_surface_t* surface, double* x_scale, double* y_scale)
{
#if !HAVE_DLAPI || !defined(SYSTEM_CAIRO)
cairo_surface_get_device_scale(surface, x_scale, y_scale);
#else
static auto func = reinterpret_cast<void (*)(cairo_surface_t*, double*, double*)>(
osl_getAsciiFunctionSymbol(nullptr, "cairo_surface_get_device_scale"));
if (func)
func(surface, x_scale, y_scale);
else
{
if (x_scale)
*x_scale = 1.0;
if (y_scale)
*y_scale = 1.0;
}
#endif
}
basegfx::B2DRange getFillDamage(cairo_t* cr)
{
double x1, y1, x2, y2;
// this is faster than cairo_fill_extents, at the cost of some overdraw
cairo_path_extents(cr, &x1, &y1, &x2, &y2);
// support B2DRange::isEmpty()
if (0.0 != x1 || 0.0 != y1 || 0.0 != x2 || 0.0 != y2)
{
return basegfx::B2DRange(x1, y1, x2, y2);
}
return basegfx::B2DRange();
}
basegfx::B2DRange getClipBox(cairo_t* cr)
{
double x1, y1, x2, y2;
cairo_clip_extents(cr, &x1, &y1, &x2, &y2);
// support B2DRange::isEmpty()
if (0.0 != x1 || 0.0 != y1 || 0.0 != x2 || 0.0 != y2)
{
return basegfx::B2DRange(x1, y1, x2, y2);
}
return basegfx::B2DRange();
}
basegfx::B2DRange getClippedFillDamage(cairo_t* cr)
{
basegfx::B2DRange aDamageRect(getFillDamage(cr));
aDamageRect.intersect(getClipBox(cr));
return aDamageRect;
}
basegfx::B2DRange getStrokeDamage(cairo_t* cr)
{
double x1, y1, x2, y2;
// less accurate, but much faster
cairo_path_extents(cr, &x1, &y1, &x2, &y2);
// support B2DRange::isEmpty()
if (0.0 != x1 || 0.0 != y1 || 0.0 != x2 || 0.0 != y2)
{
return basegfx::B2DRange(x1, y1, x2, y2);
}
return basegfx::B2DRange();
}
basegfx::B2DRange getClippedStrokeDamage(cairo_t* cr)
{
basegfx::B2DRange aDamageRect(getStrokeDamage(cr));
aDamageRect.intersect(getClipBox(cr));
return aDamageRect;
}
// Remove bClosePath: Checked that the already used mechanism for Win using
// Gdiplus already relies on rPolygon.isClosed(), so should be safe to replace
// this.
// For PixelSnap we need the ObjectToDevice transformation here now. This is a
// special case relative to the also executed LineDraw-Offset of (0.5, 0.5) in
// DeviceCoordinates: The LineDraw-Offset is applied *after* the snap, so we
// need the ObjectToDevice transformation *without* that offset here to do the
// same. The LineDraw-Offset will be applied by the callers using a linear
// transformation for Cairo now
// For support of PixelSnapHairline we also need the ObjectToDevice transformation
// and a method (same as in gdiimpl.cxx for Win and Gdiplus). This is needed e.g.
// for Chart-content visualization. CAUTION: It's not the same as PixelSnap (!)
// tdf#129845 add reply value to allow counting a point/byte/size measurement to
// be included
static size_t AddPolygonToPath(cairo_t* cr, const basegfx::B2DPolygon& rPolygon,
const basegfx::B2DHomMatrix& rObjectToDevice, bool bPixelSnap,
bool bPixelSnapHairline)
{
// short circuit if there is nothing to do
const sal_uInt32 nPointCount(rPolygon.count());
size_t nSizeMeasure(0);
if (0 == nPointCount)
{
return nSizeMeasure;
}
const bool bHasCurves(rPolygon.areControlPointsUsed());
const bool bClosePath(rPolygon.isClosed());
const bool bObjectToDeviceUsed(!rObjectToDevice.isIdentity());
basegfx::B2DHomMatrix aObjectToDeviceInv;
basegfx::B2DPoint aLast;
PixelSnapper aSnapper;
for (sal_uInt32 nPointIdx = 0, nPrevIdx = 0;; nPrevIdx = nPointIdx++)
{
int nClosedIdx = nPointIdx;
if (nPointIdx >= nPointCount)
{
// prepare to close last curve segment if needed
if (bClosePath && (nPointIdx == nPointCount))
{
nClosedIdx = 0;
}
else
{
break;
}
}
basegfx::B2DPoint aPoint(rPolygon.getB2DPoint(nClosedIdx));
if (bPixelSnap)
{
// snap device coordinates to full pixels
if (bObjectToDeviceUsed)
{
// go to DeviceCoordinates
aPoint *= rObjectToDevice;
}
// snap by rounding
aPoint.setX(basegfx::fround(aPoint.getX()));
aPoint.setY(basegfx::fround(aPoint.getY()));
if (bObjectToDeviceUsed)
{
if (aObjectToDeviceInv.isIdentity())
{
aObjectToDeviceInv = rObjectToDevice;
aObjectToDeviceInv.invert();
}
// go back to ObjectCoordinates
aPoint *= aObjectToDeviceInv;
}
}
if (bPixelSnapHairline)
{
// snap horizontal and vertical lines (mainly used in Chart for
// 'nicer' AAing)
aPoint = aSnapper.snap(rPolygon, rObjectToDevice, aObjectToDeviceInv, nClosedIdx);
}
if (!nPointIdx)
{
// first point => just move there
cairo_move_to(cr, aPoint.getX(), aPoint.getY());
aLast = aPoint;
continue;
}
bool bPendingCurve(false);
if (bHasCurves)
{
bPendingCurve = rPolygon.isNextControlPointUsed(nPrevIdx);
bPendingCurve |= rPolygon.isPrevControlPointUsed(nClosedIdx);
}
if (!bPendingCurve) // line segment
{
cairo_line_to(cr, aPoint.getX(), aPoint.getY());
nSizeMeasure++;
}
else // cubic bezier segment
{
basegfx::B2DPoint aCP1 = rPolygon.getNextControlPoint(nPrevIdx);
basegfx::B2DPoint aCP2 = rPolygon.getPrevControlPoint(nClosedIdx);
// tdf#99165 if the control points are 'empty', create the mathematical
// correct replacement ones to avoid problems with the graphical sub-system
// tdf#101026 The 1st attempt to create a mathematically correct replacement control
// vector was wrong. Best alternative is one as close as possible which means short.
if (aCP1.equal(aLast))
{
aCP1 = aLast + ((aCP2 - aLast) * 0.0005);
}
if (aCP2.equal(aPoint))
{
aCP2 = aPoint + ((aCP1 - aPoint) * 0.0005);
}
cairo_curve_to(cr, aCP1.getX(), aCP1.getY(), aCP2.getX(), aCP2.getY(), aPoint.getX(),
aPoint.getY());
// take some bigger measure for curve segments - too expensive to subdivide
// here and that precision not needed, but four (2 points, 2 control-points)
// would be a too low weight
nSizeMeasure += 10;
}
aLast = aPoint;
}
if (bClosePath)
{
cairo_close_path(cr);
}
return nSizeMeasure;
}
basegfx::B2DPoint PixelSnapper::snap(const basegfx::B2DPolygon& rPolygon,
const basegfx::B2DHomMatrix& rObjectToDevice,
basegfx::B2DHomMatrix& rObjectToDeviceInv, sal_uInt32 nIndex)
{
const sal_uInt32 nCount(rPolygon.count());
// get the data
if (nIndex == 0)
{
// if it's the first time, we need to calculate everything
maPrevPoint = rObjectToDevice * rPolygon.getB2DPoint((nIndex + nCount - 1) % nCount);
maCurrPoint = rObjectToDevice * rPolygon.getB2DPoint(nIndex);
maPrevTuple = basegfx::fround(maPrevPoint);
maCurrTuple = basegfx::fround(maCurrPoint);
}
else
{
// but for all other times, we can re-use the previous iteration computations
maPrevPoint = maCurrPoint;
maPrevTuple = maCurrTuple;
maCurrPoint = maNextPoint;
maCurrTuple = maNextTuple;
}
maNextPoint = rObjectToDevice * rPolygon.getB2DPoint((nIndex + 1) % nCount);
maNextTuple = basegfx::fround(maNextPoint);
// get the states
const bool bPrevVertical(maPrevTuple.getX() == maCurrTuple.getX());
const bool bNextVertical(maNextTuple.getX() == maCurrTuple.getX());
const bool bPrevHorizontal(maPrevTuple.getY() == maCurrTuple.getY());
const bool bNextHorizontal(maNextTuple.getY() == maCurrTuple.getY());
const bool bSnapX(bPrevVertical || bNextVertical);
const bool bSnapY(bPrevHorizontal || bNextHorizontal);
if (bSnapX || bSnapY)
{
basegfx::B2DPoint aSnappedPoint(bSnapX ? maCurrTuple.getX() : maCurrPoint.getX(),
bSnapY ? maCurrTuple.getY() : maCurrPoint.getY());
if (rObjectToDeviceInv.isIdentity())
{
rObjectToDeviceInv = rObjectToDevice;
rObjectToDeviceInv.invert();
}
aSnappedPoint *= rObjectToDeviceInv;
return aSnappedPoint;
}
return rPolygon.getB2DPoint(nIndex);
}
SystemDependentData_CairoPath::SystemDependentData_CairoPath(size_t nSizeMeasure, cairo_t* cr,
bool bNoJoin, bool bAntiAlias,
const std::vector<double>* pStroke)
: basegfx::SystemDependentData(Application::GetSystemDependentDataManager(),
basegfx::SDD_Type::SDDType_CairoPath)
, mpCairoPath(nullptr)
, mbNoJoin(bNoJoin)
, mbAntiAlias(bAntiAlias)
{
static const bool bFuzzing = comphelper::IsFuzzing();
// tdf#129845 only create a copy of the path when nSizeMeasure is
// bigger than some decent threshold
if (!bFuzzing && nSizeMeasure > 50)
{
mpCairoPath = cairo_copy_path(cr);
if (nullptr != pStroke)
{
maStroke = *pStroke;
}
}
}
SystemDependentData_CairoPath::~SystemDependentData_CairoPath()
{
if (nullptr != mpCairoPath)
{
cairo_path_destroy(mpCairoPath);
mpCairoPath = nullptr;
}
}
sal_Int64 SystemDependentData_CairoPath::estimateUsageInBytes() const
{
// tdf#129845 by using the default return value of zero when no path
// was created, SystemDependentData::calculateCombinedHoldCyclesInSeconds
// will do the right thing and not buffer this entry at all
sal_Int64 nRetval(0);
if (nullptr != mpCairoPath)
{
// per node
// - num_data incarnations of
// - sizeof(cairo_path_data_t) which is a union of defines and point data
// thus may 2 x sizeof(double)
nRetval = mpCairoPath->num_data * sizeof(cairo_path_data_t);
}
return nRetval;
}
void add_polygon_path(cairo_t* cr, const basegfx::B2DPolyPolygon& rPolyPolygon,
const basegfx::B2DHomMatrix& rObjectToDevice, bool bPixelSnap)
{
// try to access buffered data
std::shared_ptr<SystemDependentData_CairoPath> pSystemDependentData_CairoPath(
rPolyPolygon.getSystemDependentData<SystemDependentData_CairoPath>(
basegfx::SDD_Type::SDDType_CairoPath));
if (pSystemDependentData_CairoPath)
{
// re-use data
cairo_append_path(cr, pSystemDependentData_CairoPath->getCairoPath());
}
else
{
// create data
size_t nSizeMeasure(0);
for (const auto& rPoly : rPolyPolygon)
{
// PixelOffset used: Was dependent of 'm_aLineColor != SALCOLOR_NONE'
// Adapt setupPolyPolygon-users to set a linear transformation to achieve PixelOffset
nSizeMeasure += AddPolygonToPath(cr, rPoly, rObjectToDevice, bPixelSnap, false);
}
// copy and add to buffering mechanism
// for decisions how/what to buffer, see Note in WinSalGraphicsImpl::drawPolyPolygon
pSystemDependentData_CairoPath
= rPolyPolygon.addOrReplaceSystemDependentData<SystemDependentData_CairoPath>(
nSizeMeasure, cr, false, false, nullptr);
}
}
cairo_user_data_key_t* CairoCommon::getDamageKey()
{
static cairo_user_data_key_t aDamageKey;
return &aDamageKey;
}
sal_uInt16 CairoCommon::GetBitCount() const
{
if (cairo_surface_get_content(m_pSurface) == CAIRO_CONTENT_ALPHA)
return 1;
return 32;
}
cairo_t* CairoCommon::getCairoContext(bool bXorModeAllowed, bool bAntiAlias) const
{
cairo_t* cr;
if (m_ePaintMode == PaintMode::Xor && bXorModeAllowed)
cr = createTmpCompatibleCairoContext();
else
cr = cairo_create(m_pSurface);
cairo_set_line_width(cr, 1);
cairo_set_fill_rule(cr, CAIRO_FILL_RULE_EVEN_ODD);
cairo_set_antialias(cr, bAntiAlias ? CAIRO_ANTIALIAS_DEFAULT : CAIRO_ANTIALIAS_NONE);
cairo_set_operator(cr, CAIRO_OPERATOR_OVER);
// ensure no linear transformation and no PathInfo in local cairo_path_t
cairo_identity_matrix(cr);
cairo_new_path(cr);
return cr;
}
void CairoCommon::releaseCairoContext(cairo_t* cr, bool bXorModeAllowed,
const basegfx::B2DRange& rExtents) const
{
const bool bXoring = (m_ePaintMode == PaintMode::Xor && bXorModeAllowed);
if (rExtents.isEmpty())
{
//nothing changed, return early
if (bXoring)
{
cairo_surface_t* surface = cairo_get_target(cr);
cairo_surface_destroy(surface);
}
cairo_destroy(cr);
return;
}
basegfx::B2IRange aIntExtents(basegfx::unotools::b2ISurroundingRangeFromB2DRange(rExtents));
sal_Int32 nExtentsLeft(aIntExtents.getMinX()), nExtentsTop(aIntExtents.getMinY());
sal_Int32 nExtentsRight(aIntExtents.getMaxX()), nExtentsBottom(aIntExtents.getMaxY());
sal_Int32 nWidth = m_aFrameSize.getX();
sal_Int32 nHeight = m_aFrameSize.getY();
nExtentsLeft = std::max<sal_Int32>(nExtentsLeft, 0);
nExtentsTop = std::max<sal_Int32>(nExtentsTop, 0);
nExtentsRight = std::min<sal_Int32>(nExtentsRight, nWidth);
nExtentsBottom = std::min<sal_Int32>(nExtentsBottom, nHeight);
cairo_surface_t* surface = cairo_get_target(cr);
cairo_surface_flush(surface);
//For the most part we avoid the use of XOR these days, but there
//are some edge cases where legacy stuff still supports it, so
//emulate it (slowly) here.
if (bXoring)
doXorOnRelease(nExtentsLeft, nExtentsTop, nExtentsRight, nExtentsBottom, surface, nWidth);
cairo_destroy(cr); // unref
DamageHandler* pDamage
= static_cast<DamageHandler*>(cairo_surface_get_user_data(m_pSurface, getDamageKey()));
if (pDamage)
{
pDamage->damaged(pDamage->handle, nExtentsLeft, nExtentsTop, nExtentsRight - nExtentsLeft,
nExtentsBottom - nExtentsTop);
}
}
void CairoCommon::applyFullDamage() const
{
if (nullptr == m_pSurface)
return;
DamageHandler* pDamage
= static_cast<DamageHandler*>(cairo_surface_get_user_data(m_pSurface, getDamageKey()));
if (nullptr == pDamage)
return;
pDamage->damaged(pDamage->handle, 0, 0, m_aFrameSize.getX(), m_aFrameSize.getY());
}
void CairoCommon::doXorOnRelease(sal_Int32 nExtentsLeft, sal_Int32 nExtentsTop,
sal_Int32 nExtentsRight, sal_Int32 nExtentsBottom,
cairo_surface_t* const surface, sal_Int32 nWidth) const
{
//For the most part we avoid the use of XOR these days, but there
//are some edge cases where legacy stuff still supports it, so
//emulate it (slowly) here.
cairo_surface_t* target_surface = m_pSurface;
if (cairo_surface_get_type(target_surface) != CAIRO_SURFACE_TYPE_IMAGE)
{
//in the unlikely case we can't use m_pSurface directly, copy contents
//to another temp image surface
if (cairo_surface_get_content(m_pSurface) == CAIRO_CONTENT_COLOR_ALPHA)
target_surface = cairo_surface_map_to_image(target_surface, nullptr);
else
{
// for gen, which is CAIRO_FORMAT_RGB24/CAIRO_CONTENT_COLOR I'm getting
// visual corruption in vcldemo with cairo_surface_map_to_image
cairo_t* copycr = createTmpCompatibleCairoContext();
cairo_rectangle(copycr, nExtentsLeft, nExtentsTop, nExtentsRight - nExtentsLeft,
nExtentsBottom - nExtentsTop);
cairo_set_source_surface(copycr, m_pSurface, 0, 0);
cairo_fill(copycr);
target_surface = cairo_get_target(copycr);
cairo_destroy(copycr);
}
}
cairo_surface_flush(target_surface);
unsigned char* target_surface_data = cairo_image_surface_get_data(target_surface);
unsigned char* xor_surface_data = cairo_image_surface_get_data(surface);
cairo_format_t nFormat = cairo_image_surface_get_format(target_surface);
assert(nFormat == CAIRO_FORMAT_ARGB32 && "need to implement CAIRO_FORMAT_A1 after all here");
sal_Int32 nStride = cairo_format_stride_for_width(nFormat, nWidth * m_fScale);
sal_Int32 nUnscaledExtentsLeft = nExtentsLeft * m_fScale;
sal_Int32 nUnscaledExtentsRight = nExtentsRight * m_fScale;
sal_Int32 nUnscaledExtentsTop = nExtentsTop * m_fScale;
sal_Int32 nUnscaledExtentsBottom = nExtentsBottom * m_fScale;
// Handle headless size forced to (1,1) by SvpSalFrame::GetSurfaceFrameSize().
int target_surface_width = cairo_image_surface_get_width(target_surface);
if (nUnscaledExtentsLeft > target_surface_width)
nUnscaledExtentsLeft = target_surface_width;
if (nUnscaledExtentsRight > target_surface_width)
nUnscaledExtentsRight = target_surface_width;
int target_surface_height = cairo_image_surface_get_height(target_surface);
if (nUnscaledExtentsTop > target_surface_height)
nUnscaledExtentsTop = target_surface_height;
if (nUnscaledExtentsBottom > target_surface_height)
nUnscaledExtentsBottom = target_surface_height;
#if !ENABLE_WASM_STRIP_PREMULTIPLY
vcl::bitmap::lookup_table const& unpremultiply_table = vcl::bitmap::get_unpremultiply_table();
vcl::bitmap::lookup_table const& premultiply_table = vcl::bitmap::get_premultiply_table();
#endif
for (sal_Int32 y = nUnscaledExtentsTop; y < nUnscaledExtentsBottom; ++y)
{
unsigned char* true_row = target_surface_data + (nStride * y);
unsigned char* xor_row = xor_surface_data + (nStride * y);
unsigned char* true_data = true_row + (nUnscaledExtentsLeft * 4);
unsigned char* xor_data = xor_row + (nUnscaledExtentsLeft * 4);
for (sal_Int32 x = nUnscaledExtentsLeft; x < nUnscaledExtentsRight; ++x)
{
sal_uInt8 a = true_data[SVP_CAIRO_ALPHA];
sal_uInt8 xor_a = xor_data[SVP_CAIRO_ALPHA];
#if ENABLE_WASM_STRIP_PREMULTIPLY
sal_uInt8 b = vcl::bitmap::unpremultiply(true_data[SVP_CAIRO_BLUE], a)
^ vcl::bitmap::unpremultiply(xor_data[SVP_CAIRO_BLUE], xor_a);
sal_uInt8 g = vcl::bitmap::unpremultiply(true_data[SVP_CAIRO_GREEN], a)
^ vcl::bitmap::unpremultiply(xor_data[SVP_CAIRO_GREEN], xor_a);
sal_uInt8 r = vcl::bitmap::unpremultiply(true_data[SVP_CAIRO_RED], a)
^ vcl::bitmap::unpremultiply(xor_data[SVP_CAIRO_RED], xor_a);
true_data[SVP_CAIRO_BLUE] = vcl::bitmap::premultiply(b, a);
true_data[SVP_CAIRO_GREEN] = vcl::bitmap::premultiply(g, a);
true_data[SVP_CAIRO_RED] = vcl::bitmap::premultiply(r, a);
#else
sal_uInt8 b = unpremultiply_table[a][true_data[SVP_CAIRO_BLUE]]
^ unpremultiply_table[xor_a][xor_data[SVP_CAIRO_BLUE]];
sal_uInt8 g = unpremultiply_table[a][true_data[SVP_CAIRO_GREEN]]
^ unpremultiply_table[xor_a][xor_data[SVP_CAIRO_GREEN]];
sal_uInt8 r = unpremultiply_table[a][true_data[SVP_CAIRO_RED]]
^ unpremultiply_table[xor_a][xor_data[SVP_CAIRO_RED]];
true_data[SVP_CAIRO_BLUE] = premultiply_table[a][b];
true_data[SVP_CAIRO_GREEN] = premultiply_table[a][g];
true_data[SVP_CAIRO_RED] = premultiply_table[a][r];
#endif
true_data += 4;
xor_data += 4;
}
}
cairo_surface_mark_dirty(target_surface);
if (target_surface != m_pSurface)
{
if (cairo_surface_get_content(m_pSurface) == CAIRO_CONTENT_COLOR_ALPHA)
cairo_surface_unmap_image(m_pSurface, target_surface);
else
{
cairo_t* copycr = cairo_create(m_pSurface);
//copy contents back from image surface
cairo_rectangle(copycr, nExtentsLeft, nExtentsTop, nExtentsRight - nExtentsLeft,
nExtentsBottom - nExtentsTop);
cairo_set_source_surface(copycr, target_surface, 0, 0);
cairo_fill(copycr);
cairo_destroy(copycr);
cairo_surface_destroy(target_surface);
}
}
cairo_surface_destroy(surface);
}
cairo_t* CairoCommon::createTmpCompatibleCairoContext() const
{
cairo_surface_t* target = cairo_surface_create_similar_image(m_pSurface, CAIRO_FORMAT_ARGB32,
m_aFrameSize.getX() * m_fScale,
m_aFrameSize.getY() * m_fScale);
dl_cairo_surface_set_device_scale(target, m_fScale, m_fScale);
return cairo_create(target);
}
void CairoCommon::applyColor(cairo_t* cr, Color aColor, double fTransparency)
{
if (cairo_surface_get_content(cairo_get_target(cr)) != CAIRO_CONTENT_ALPHA)
{
cairo_set_source_rgba(cr, aColor.GetRed() / 255.0, aColor.GetGreen() / 255.0,
aColor.GetBlue() / 255.0, 1.0 - fTransparency);
}
else
{
double fSet = aColor == COL_BLACK ? 1.0 : 0.0;
cairo_set_source_rgba(cr, 1, 1, 1, fSet);
cairo_set_operator(cr, CAIRO_OPERATOR_SOURCE);
}
}
void CairoCommon::clipRegion(cairo_t* cr, const vcl::Region& rClipRegion)
{
RectangleVector aRectangles;
if (!rClipRegion.IsEmpty())
{
rClipRegion.GetRegionRectangles(aRectangles);
}
if (!aRectangles.empty())
{
bool bEmpty = true;
for (auto const& rectangle : aRectangles)
{
if (rectangle.GetWidth() <= 0 || rectangle.GetHeight() <= 0)
{
SAL_WARN("vcl.gdi", "bad clip rect of: " << rectangle);
continue;
}
cairo_rectangle(cr, rectangle.Left(), rectangle.Top(), rectangle.GetWidth(),
rectangle.GetHeight());
bEmpty = false;
}
if (!bEmpty)
cairo_clip(cr);
}
}
void CairoCommon::clipRegion(cairo_t* cr) { CairoCommon::clipRegion(cr, m_aClipRegion); }
void CairoCommon::SetXORMode(bool bSet, bool /*bInvertOnly*/)
{
m_ePaintMode = bSet ? PaintMode::Xor : PaintMode::Over;
}
void CairoCommon::SetROPLineColor(SalROPColor nROPColor)
{
switch (nROPColor)
{
case SalROPColor::N0:
m_oLineColor = Color(0, 0, 0);
break;
case SalROPColor::N1:
case SalROPColor::Invert:
m_oLineColor = Color(0xff, 0xff, 0xff);
break;
}
}
void CairoCommon::SetROPFillColor(SalROPColor nROPColor)
{
switch (nROPColor)
{
case SalROPColor::N0:
m_oFillColor = Color(0, 0, 0);
break;
case SalROPColor::N1:
case SalROPColor::Invert:
m_oFillColor = Color(0xff, 0xff, 0xff);
break;
}
}
void CairoCommon::drawPixel(const std::optional<Color>& rLineColor, tools::Long nX, tools::Long nY,
bool bAntiAlias)
{
if (!rLineColor)
return;
cairo_t* cr = getCairoContext(true, bAntiAlias);
clipRegion(cr);
cairo_rectangle(cr, nX, nY, 1, 1);
CairoCommon::applyColor(cr, *rLineColor, 0.0);
cairo_fill(cr);
basegfx::B2DRange extents = getClippedFillDamage(cr);
releaseCairoContext(cr, true, extents);
}
Color CairoCommon::getPixel(cairo_surface_t* pSurface, tools::Long nX, tools::Long nY)
{
cairo_surface_t* target
= cairo_surface_create_similar_image(pSurface, CAIRO_FORMAT_ARGB32, 1, 1);
cairo_t* cr = cairo_create(target);
cairo_rectangle(cr, 0, 0, 1, 1);
cairo_set_source_surface(cr, pSurface, -nX, -nY);
cairo_paint(cr);
cairo_destroy(cr);
cairo_surface_flush(target);
#if !ENABLE_WASM_STRIP_PREMULTIPLY
vcl::bitmap::lookup_table const& unpremultiply_table = vcl::bitmap::get_unpremultiply_table();
#endif
unsigned char* data = cairo_image_surface_get_data(target);
sal_uInt8 a = data[SVP_CAIRO_ALPHA];
#if ENABLE_WASM_STRIP_PREMULTIPLY
sal_uInt8 b = vcl::bitmap::unpremultiply(data[SVP_CAIRO_BLUE], a);
sal_uInt8 g = vcl::bitmap::unpremultiply(data[SVP_CAIRO_GREEN], a);
sal_uInt8 r = vcl::bitmap::unpremultiply(data[SVP_CAIRO_RED], a);
#else
sal_uInt8 b = unpremultiply_table[a][data[SVP_CAIRO_BLUE]];
sal_uInt8 g = unpremultiply_table[a][data[SVP_CAIRO_GREEN]];
sal_uInt8 r = unpremultiply_table[a][data[SVP_CAIRO_RED]];
#endif
Color aColor(ColorAlpha, a, r, g, b);
cairo_surface_destroy(target);
return aColor;
}
void CairoCommon::drawLine(tools::Long nX1, tools::Long nY1, tools::Long nX2, tools::Long nY2,
bool bAntiAlias)
{
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
basegfx::B2DPolygon aPoly;
// PixelOffset used: To not mix with possible PixelSnap, cannot do
// directly on coordinates as tried before - despite being already 'snapped'
// due to being integer. If it would be directly added here, it would be
// 'snapped' again when !getAntiAlias(), losing the (0.5, 0.5) offset
aPoly.append(basegfx::B2DPoint(nX1, nY1));
aPoly.append(basegfx::B2DPoint(nX2, nY2));
// PixelOffset used: Set PixelOffset as linear transformation
cairo_matrix_t aMatrix;
cairo_matrix_init_translate(&aMatrix, 0.5, 0.5);
cairo_set_matrix(cr, &aMatrix);
AddPolygonToPath(cr, aPoly, basegfx::B2DHomMatrix(), !bAntiAlias, false);
CairoCommon::applyColor(cr, *m_oLineColor);
basegfx::B2DRange extents = getClippedStrokeDamage(cr);
extents.transform(basegfx::utils::createTranslateB2DHomMatrix(0.5, 0.5));
cairo_stroke(cr);
releaseCairoContext(cr, false, extents);
}
// true if we have a fill color and the line color is the same or non-existent
static bool onlyFillRect(const std::optional<Color>& rFillColor,
const std::optional<Color>& rLineColor)
{
if (!rFillColor)
return false;
if (!rLineColor)
return true;
return *rFillColor == *rLineColor;
}
void CairoCommon::drawRect(double nX, double nY, double nWidth, double nHeight, bool bAntiAlias)
{
// fast path for the common case of simply creating a solid block of color
if (onlyFillRect(m_oFillColor, m_oLineColor))
{
double fTransparency = 0;
// don't bother trying to draw stuff which is effectively invisible
if (nWidth < 0.1 || nHeight < 0.1)
return;
cairo_t* cr = getCairoContext(true, bAntiAlias);
clipRegion(cr);
bool bPixelSnap = !bAntiAlias;
if (bPixelSnap)
{
// snap by rounding
nX = basegfx::fround(nX);
nY = basegfx::fround(nY);
nWidth = basegfx::fround(nWidth);
nHeight = basegfx::fround(nHeight);
}
cairo_rectangle(cr, nX, nY, nWidth, nHeight);
CairoCommon::applyColor(cr, *m_oFillColor, fTransparency);
// Get FillDamage
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_fill(cr);
releaseCairoContext(cr, true, extents);
return;
}
// because of the -1 hack we have to do fill and draw separately
std::optional<Color> aOrigFillColor = m_oFillColor;
std::optional<Color> aOrigLineColor = m_oLineColor;
m_oFillColor = std::nullopt;
m_oLineColor = std::nullopt;
if (aOrigFillColor)
{
basegfx::B2DPolygon aRect = basegfx::utils::createPolygonFromRect(
basegfx::B2DRectangle(nX, nY, nX + nWidth, nY + nHeight));
m_oFillColor = aOrigFillColor;
drawPolyPolygon(basegfx::B2DHomMatrix(), basegfx::B2DPolyPolygon(aRect), 0.0, bAntiAlias);
m_oFillColor = std::nullopt;
}
if (aOrigLineColor)
{
// need -1 hack to exclude the bottom and right edges to act like wingdi "Rectangle"
// function which is what was probably the ultimate origin of this behavior
basegfx::B2DPolygon aRect = basegfx::utils::createPolygonFromRect(
basegfx::B2DRectangle(nX, nY, nX + nWidth - 1, nY + nHeight - 1));
m_oLineColor = aOrigLineColor;
drawPolyPolygon(basegfx::B2DHomMatrix(), basegfx::B2DPolyPolygon(aRect), 0.0, bAntiAlias);
m_oLineColor = std::nullopt;
}
m_oFillColor = aOrigFillColor;
m_oLineColor = aOrigLineColor;
}
void CairoCommon::drawPolygon(sal_uInt32 nPoints, const Point* pPtAry, bool bAntiAlias)
{
basegfx::B2DPolygon aPoly;
aPoly.append(basegfx::B2DPoint(pPtAry->getX(), pPtAry->getY()), nPoints);
for (sal_uInt32 i = 1; i < nPoints; ++i)
aPoly.setB2DPoint(i, basegfx::B2DPoint(pPtAry[i].getX(), pPtAry[i].getY()));
drawPolyPolygon(basegfx::B2DHomMatrix(), basegfx::B2DPolyPolygon(aPoly), 0.0, bAntiAlias);
}
void CairoCommon::drawPolyPolygon(sal_uInt32 nPoly, const sal_uInt32* pPointCounts,
const Point** pPtAry, bool bAntiAlias)
{
basegfx::B2DPolyPolygon aPolyPoly;
for (sal_uInt32 nPolygon = 0; nPolygon < nPoly; ++nPolygon)
{
sal_uInt32 nPoints = pPointCounts[nPolygon];
if (nPoints)
{
const Point* pPoints = pPtAry[nPolygon];
basegfx::B2DPolygon aPoly;
aPoly.append(basegfx::B2DPoint(pPoints->getX(), pPoints->getY()), nPoints);
for (sal_uInt32 i = 1; i < nPoints; ++i)
aPoly.setB2DPoint(i, basegfx::B2DPoint(pPoints[i].getX(), pPoints[i].getY()));
aPolyPoly.append(aPoly);
}
}
drawPolyPolygon(basegfx::B2DHomMatrix(), aPolyPoly, 0.0, bAntiAlias);
}
void CairoCommon::drawPolyPolygon(const basegfx::B2DHomMatrix& rObjectToDevice,
const basegfx::B2DPolyPolygon& rPolyPolygon, double fTransparency,
bool bAntiAlias)
{
const bool bHasFill(m_oFillColor.has_value());
const bool bHasLine(m_oLineColor.has_value());
if (0 == rPolyPolygon.count() || !(bHasFill || bHasLine) || fTransparency < 0.0
|| fTransparency >= 1.0)
{
return;
}
if (!bHasLine)
{
// don't bother trying to draw stuff which is effectively invisible, speeds up
// drawing some complex drawings. This optimisation is not valid when we do
// the pixel offset thing (i.e. bHasLine)
basegfx::B2DRange aPolygonRange = rPolyPolygon.getB2DRange();
aPolygonRange.transform(rObjectToDevice);
if (aPolygonRange.getWidth() < 0.1 || aPolygonRange.getHeight() < 0.1)
return;
}
cairo_t* cr = getCairoContext(true, bAntiAlias);
if (cairo_status(cr) != CAIRO_STATUS_SUCCESS)
{
SAL_WARN("vcl.gdi",
"cannot render to surface: " << cairo_status_to_string(cairo_status(cr)));
releaseCairoContext(cr, true, basegfx::B2DRange());
return;
}
clipRegion(cr);
// Set full (Object-to-Device) transformation - if used
if (!rObjectToDevice.isIdentity())
{
cairo_matrix_t aMatrix;
cairo_matrix_init(&aMatrix, rObjectToDevice.get(0, 0), rObjectToDevice.get(1, 0),
rObjectToDevice.get(0, 1), rObjectToDevice.get(1, 1),
rObjectToDevice.get(0, 2), rObjectToDevice.get(1, 2));
cairo_set_matrix(cr, &aMatrix);
}
// To make releaseCairoContext work, use empty extents
basegfx::B2DRange extents;
if (bHasFill)
{
add_polygon_path(cr, rPolyPolygon, rObjectToDevice, !bAntiAlias);
CairoCommon::applyColor(cr, *m_oFillColor, fTransparency);
// Get FillDamage (will be extended for LineDamage below)
extents = getClippedFillDamage(cr);
cairo_fill(cr);
}
if (bHasLine)
{
// PixelOffset used: Set PixelOffset as linear transformation
cairo_matrix_t aMatrix;
cairo_matrix_init_translate(&aMatrix, 0.5, 0.5);
cairo_set_matrix(cr, &aMatrix);
add_polygon_path(cr, rPolyPolygon, rObjectToDevice, !bAntiAlias);
CairoCommon::applyColor(cr, *m_oLineColor, fTransparency);
// expand with possible StrokeDamage
basegfx::B2DRange stroke_extents = getClippedStrokeDamage(cr);
stroke_extents.transform(basegfx::utils::createTranslateB2DHomMatrix(0.5, 0.5));
extents.expand(stroke_extents);
cairo_stroke(cr);
}
// if transformation has been applied, transform also extents (ranges)
// of damage so they can be correctly redrawn
extents.transform(rObjectToDevice);
releaseCairoContext(cr, true, extents);
}
void CairoCommon::drawPolyLine(sal_uInt32 nPoints, const Point* pPtAry, bool bAntiAlias)
{
basegfx::B2DPolygon aPoly;
aPoly.append(basegfx::B2DPoint(pPtAry->getX(), pPtAry->getY()), nPoints);
for (sal_uInt32 i = 1; i < nPoints; ++i)
aPoly.setB2DPoint(i, basegfx::B2DPoint(pPtAry[i].getX(), pPtAry[i].getY()));
aPoly.setClosed(false);
drawPolyLine(basegfx::B2DHomMatrix(), aPoly, 0.0, 1.0, nullptr, basegfx::B2DLineJoin::Miter,
css::drawing::LineCap_BUTT, basegfx::deg2rad(15.0) /*default*/, false, bAntiAlias);
}
bool CairoCommon::drawPolyLine(const basegfx::B2DHomMatrix& rObjectToDevice,
const basegfx::B2DPolygon& rPolyLine, double fTransparency,
double fLineWidth, const std::vector<double>* pStroke,
basegfx::B2DLineJoin eLineJoin, css::drawing::LineCap eLineCap,
double fMiterMinimumAngle, bool bPixelSnapHairline, bool bAntiAlias)
{
// short circuit if there is nothing to do
if (0 == rPolyLine.count() || fTransparency < 0.0 || fTransparency >= 1.0)
{
return true;
}
static const bool bFuzzing = comphelper::IsFuzzing();
if (bFuzzing)
{
const basegfx::B2DRange aRange(basegfx::utils::getRange(rPolyLine));
if (aRange.getMaxX() - aRange.getMinX() > 0x10000000
|| aRange.getMaxY() - aRange.getMinY() > 0x10000000)
{
SAL_WARN("vcl.gdi", "drawPolyLine, skipping suspicious range of: "
<< aRange << " for fuzzing performance");
return true;
}
}
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
// need to check/handle LineWidth when ObjectToDevice transformation is used
const bool bObjectToDeviceIsIdentity(rObjectToDevice.isIdentity());
// tdf#124848 calculate-back logical LineWidth for a hairline
// since this implementation hands over the transformation to
// the graphic sub-system
if (fLineWidth == 0)
{
fLineWidth = 1.0;
if (!bObjectToDeviceIsIdentity)
{
basegfx::B2DHomMatrix aObjectToDeviceInv(rObjectToDevice);
aObjectToDeviceInv.invert();
fLineWidth = (aObjectToDeviceInv * basegfx::B2DVector(fLineWidth, 0)).getLength();
}
}
// PixelOffset used: Need to reflect in linear transformation
cairo_matrix_t aMatrix;
basegfx::B2DHomMatrix aDamageMatrix(basegfx::utils::createTranslateB2DHomMatrix(0.5, 0.5));
if (bObjectToDeviceIsIdentity)
{
// Set PixelOffset as requested
cairo_matrix_init_translate(&aMatrix, 0.5, 0.5);
}
else
{
// Prepare ObjectToDevice transformation. Take PixelOffset for Lines into
// account: Multiply from left to act in DeviceCoordinates
aDamageMatrix = aDamageMatrix * rObjectToDevice;
cairo_matrix_init(&aMatrix, aDamageMatrix.get(0, 0), aDamageMatrix.get(1, 0),
aDamageMatrix.get(0, 1), aDamageMatrix.get(1, 1), aDamageMatrix.get(0, 2),
aDamageMatrix.get(1, 2));
}
// set linear transformation
cairo_set_matrix(cr, &aMatrix);
// setup line attributes
cairo_line_join_t eCairoLineJoin = CAIRO_LINE_JOIN_MITER;
switch (eLineJoin)
{
case basegfx::B2DLineJoin::Bevel:
eCairoLineJoin = CAIRO_LINE_JOIN_BEVEL;
break;
case basegfx::B2DLineJoin::Round:
eCairoLineJoin = CAIRO_LINE_JOIN_ROUND;
break;
case basegfx::B2DLineJoin::NONE:
case basegfx::B2DLineJoin::Miter:
eCairoLineJoin = CAIRO_LINE_JOIN_MITER;
break;
}
// convert miter minimum angle to miter limit
double fMiterLimit = 1.0 / sin(std::max(fMiterMinimumAngle, 0.01 * M_PI) / 2.0);
// setup cap attribute
cairo_line_cap_t eCairoLineCap(CAIRO_LINE_CAP_BUTT);
switch (eLineCap)
{
default: // css::drawing::LineCap_BUTT:
{
eCairoLineCap = CAIRO_LINE_CAP_BUTT;
break;
}
case css::drawing::LineCap_ROUND:
{
eCairoLineCap = CAIRO_LINE_CAP_ROUND;
break;
}
case css::drawing::LineCap_SQUARE:
{
eCairoLineCap = CAIRO_LINE_CAP_SQUARE;
break;
}
}
cairo_set_source_rgba(cr, m_oLineColor->GetRed() / 255.0, m_oLineColor->GetGreen() / 255.0,
m_oLineColor->GetBlue() / 255.0, 1.0 - fTransparency);
cairo_set_line_join(cr, eCairoLineJoin);
cairo_set_line_cap(cr, eCairoLineCap);
constexpr int MaxNormalLineWidthPx = 64;
if (fLineWidth > MaxNormalLineWidthPx)
{
const double fLineWidthPixel
= bObjectToDeviceIsIdentity
? fLineWidth
: (rObjectToDevice * basegfx::B2DVector(fLineWidth, 0)).getLength();
constexpr double MaxLineWidth = 0x20000000;
// if the width is pixels is excessive, or if the actual number is huge, then
// when fuzzing drop it to something small
if (fLineWidthPixel > MaxNormalLineWidthPx || fLineWidth > MaxLineWidth)
{
SAL_WARN("vcl.gdi", "drawPolyLine, suspicious input line width of: "
<< fLineWidth << ", will be " << fLineWidthPixel
<< " pixels thick");
if (bFuzzing)
{
basegfx::B2DHomMatrix aObjectToDeviceInv(rObjectToDevice);
aObjectToDeviceInv.invert();
fLineWidth = (aObjectToDeviceInv * basegfx::B2DVector(MaxNormalLineWidthPx, 0))
.getLength();
fLineWidth = std::min(fLineWidth, 2048.0);
}
}
}
cairo_set_line_width(cr, fLineWidth);
cairo_set_miter_limit(cr, fMiterLimit);
// try to access buffered data
std::shared_ptr<SystemDependentData_CairoPath> pSystemDependentData_CairoPath(
rPolyLine.getSystemDependentData<SystemDependentData_CairoPath>(
basegfx::SDD_Type::SDDType_CairoPath));
// MM01 need to do line dashing as fallback stuff here now
const double fDotDashLength(
nullptr != pStroke ? std::accumulate(pStroke->begin(), pStroke->end(), 0.0) : 0.0);
const bool bStrokeUsed(0.0 != fDotDashLength);
assert(!bStrokeUsed || (bStrokeUsed && pStroke));
// MM01 decide if to stroke directly
static const bool bDoDirectCairoStroke(true);
// MM01 activate to stroke directly
if (bDoDirectCairoStroke && bStrokeUsed)
{
cairo_set_dash(cr, pStroke->data(), pStroke->size(), 0.0);
}
if (!bDoDirectCairoStroke && pSystemDependentData_CairoPath)
{
// MM01 - check on stroke change. Used against not used, or if both used,
// equal or different?
const bool bStrokeWasUsed(!pSystemDependentData_CairoPath->getStroke().empty());
if (bStrokeWasUsed != bStrokeUsed
|| (bStrokeUsed && *pStroke != pSystemDependentData_CairoPath->getStroke()))
{
// data invalid, forget
pSystemDependentData_CairoPath.reset();
}
}
// check for basegfx::B2DLineJoin::NONE to react accordingly
const bool bNoJoin(basegfx::B2DLineJoin::NONE == eLineJoin && fLineWidth > 0.0
&& !basegfx::fTools::equalZero(fLineWidth));
if (pSystemDependentData_CairoPath)
{
// check data validity
if (nullptr == pSystemDependentData_CairoPath->getCairoPath()
|| pSystemDependentData_CairoPath->getNoJoin() != bNoJoin
|| pSystemDependentData_CairoPath->getAntiAlias() != bAntiAlias
|| bPixelSnapHairline /*tdf#124700*/)
{
// data invalid, forget
pSystemDependentData_CairoPath.reset();
}
}
if (pSystemDependentData_CairoPath)
{
// re-use data
cairo_append_path(cr, pSystemDependentData_CairoPath->getCairoPath());
}
else
{
// create data
size_t nSizeMeasure(0);
// MM01 need to do line dashing as fallback stuff here now
basegfx::B2DPolyPolygon aPolyPolygonLine;
if (!bDoDirectCairoStroke && bStrokeUsed)
{
// apply LineStyle
basegfx::utils::applyLineDashing(rPolyLine, // source
*pStroke, // pattern
&aPolyPolygonLine, // target for lines
nullptr, // target for gaps
fDotDashLength); // full length if available
}
else
{
// no line dashing or direct stroke, just copy
aPolyPolygonLine.append(rPolyLine);
}
// MM01 checked/verified for Cairo
for (sal_uInt32 a(0); a < aPolyPolygonLine.count(); a++)
{
const basegfx::B2DPolygon& aPolyLine(aPolyPolygonLine.getB2DPolygon(a));
if (!bNoJoin)
{
// PixelOffset now reflected in linear transformation used
nSizeMeasure
+= AddPolygonToPath(cr, aPolyLine,
rObjectToDevice, // ObjectToDevice *without* LineDraw-Offset
!bAntiAlias, bPixelSnapHairline);
}
else
{
const sal_uInt32 nPointCount(aPolyLine.count());
const sal_uInt32 nEdgeCount(aPolyLine.isClosed() ? nPointCount : nPointCount - 1);
basegfx::B2DPolygon aEdge;
aEdge.append(aPolyLine.getB2DPoint(0));
aEdge.append(basegfx::B2DPoint(0.0, 0.0));
for (sal_uInt32 i(0); i < nEdgeCount; i++)
{
const sal_uInt32 nNextIndex((i + 1) % nPointCount);
aEdge.setB2DPoint(1, aPolyLine.getB2DPoint(nNextIndex));
aEdge.setNextControlPoint(0, aPolyLine.getNextControlPoint(i));
aEdge.setPrevControlPoint(1, aPolyLine.getPrevControlPoint(nNextIndex));
// PixelOffset now reflected in linear transformation used
nSizeMeasure += AddPolygonToPath(
cr, aEdge,
rObjectToDevice, // ObjectToDevice *without* LineDraw-Offset
!bAntiAlias, bPixelSnapHairline);
// prepare next step
aEdge.setB2DPoint(0, aEdge.getB2DPoint(1));
}
}
}
// copy and add to buffering mechanism
if (!bPixelSnapHairline /*tdf#124700*/)
{
pSystemDependentData_CairoPath
= rPolyLine.addOrReplaceSystemDependentData<SystemDependentData_CairoPath>(
nSizeMeasure, cr, bNoJoin, bAntiAlias, pStroke);
}
}
// extract extents
basegfx::B2DRange extents = getClippedStrokeDamage(cr);
// transform also extents (ranges) of damage so they can be correctly redrawn
extents.transform(aDamageMatrix);
// draw and consume
cairo_stroke(cr);
releaseCairoContext(cr, false, extents);
return true;
}
bool CairoCommon::drawAlphaRect(tools::Long nX, tools::Long nY, tools::Long nWidth,
tools::Long nHeight, sal_uInt8 nTransparency, bool bAntiAlias)
{
const bool bHasFill(m_oFillColor.has_value());
const bool bHasLine(m_oLineColor.has_value());
if (!bHasFill && !bHasLine)
return true;
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
const double fTransparency = nTransparency * (1.0 / 100);
// To make releaseCairoContext work, use empty extents
basegfx::B2DRange extents;
if (bHasFill)
{
cairo_rectangle(cr, nX, nY, nWidth, nHeight);
applyColor(cr, *m_oFillColor, fTransparency);
// set FillDamage
extents = getClippedFillDamage(cr);
cairo_fill(cr);
}
if (bHasLine)
{
// PixelOffset used: Set PixelOffset as linear transformation
// Note: Was missing here - probably not by purpose (?)
cairo_matrix_t aMatrix;
cairo_matrix_init_translate(&aMatrix, 0.5, 0.5);
cairo_set_matrix(cr, &aMatrix);
cairo_rectangle(cr, nX, nY, nWidth, nHeight);
applyColor(cr, *m_oLineColor, fTransparency);
// expand with possible StrokeDamage
basegfx::B2DRange stroke_extents = getClippedStrokeDamage(cr);
stroke_extents.transform(basegfx::utils::createTranslateB2DHomMatrix(0.5, 0.5));
extents.expand(stroke_extents);
cairo_stroke(cr);
}
releaseCairoContext(cr, false, extents);
return true;
}
bool CairoCommon::drawGradient(const tools::PolyPolygon& rPolyPolygon, const Gradient& rGradient,
bool bAntiAlias)
{
if (rGradient.GetStyle() != css::awt::GradientStyle_LINEAR
&& rGradient.GetStyle() != css::awt::GradientStyle_RADIAL)
return false; // unsupported
if (rGradient.GetSteps() != 0)
return false; // We can't tell cairo how many colors to use in the gradient.
cairo_t* cr = getCairoContext(true, bAntiAlias);
clipRegion(cr);
tools::Rectangle aInputRect(rPolyPolygon.GetBoundRect());
if (rPolyPolygon.IsRect())
{
// Rect->Polygon conversion loses the right and bottom edge, fix that.
aInputRect.AdjustRight(1);
aInputRect.AdjustBottom(1);
basegfx::B2DHomMatrix rObjectToDevice;
AddPolygonToPath(cr, tools::Polygon(aInputRect).getB2DPolygon(), rObjectToDevice,
!bAntiAlias, false);
}
else
{
basegfx::B2DPolyPolygon aB2DPolyPolygon(rPolyPolygon.getB2DPolyPolygon());
for (auto const& rPolygon : std::as_const(aB2DPolyPolygon))
{
basegfx::B2DHomMatrix rObjectToDevice;
AddPolygonToPath(cr, rPolygon, rObjectToDevice, !bAntiAlias, false);
}
}
Gradient aGradient(rGradient);
tools::Rectangle aBoundRect;
Point aCenter;
aGradient.SetAngle(aGradient.GetAngle() + 2700_deg10);
aGradient.GetBoundRect(aInputRect, aBoundRect, aCenter);
Color aStartColor = aGradient.GetStartColor();
Color aEndColor = aGradient.GetEndColor();
cairo_pattern_t* pattern;
if (rGradient.GetStyle() == css::awt::GradientStyle_LINEAR)
{
tools::Polygon aPoly(aBoundRect);
aPoly.Rotate(aCenter, aGradient.GetAngle() % 3600_deg10);
pattern
= cairo_pattern_create_linear(aPoly[0].X(), aPoly[0].Y(), aPoly[1].X(), aPoly[1].Y());
}
else
{
double radius = std::max(aBoundRect.GetWidth() / 2.0, aBoundRect.GetHeight() / 2.0);
// Move the center a bit to the top-left (the default VCL algorithm is a bit off-center that way,
// cairo is the opposite way).
pattern = cairo_pattern_create_radial(aCenter.X() - 0.5, aCenter.Y() - 0.5, 0,
aCenter.X() - 0.5, aCenter.Y() - 0.5, radius);
std::swap(aStartColor, aEndColor);
}
cairo_pattern_add_color_stop_rgba(
pattern, aGradient.GetBorder() / 100.0,
aStartColor.GetRed() * aGradient.GetStartIntensity() / 25500.0,
aStartColor.GetGreen() * aGradient.GetStartIntensity() / 25500.0,
aStartColor.GetBlue() * aGradient.GetStartIntensity() / 25500.0, 1.0);
cairo_pattern_add_color_stop_rgba(
pattern, 1.0, aEndColor.GetRed() * aGradient.GetEndIntensity() / 25500.0,
aEndColor.GetGreen() * aGradient.GetEndIntensity() / 25500.0,
aEndColor.GetBlue() * aGradient.GetEndIntensity() / 25500.0, 1.0);
cairo_set_source(cr, pattern);
cairo_pattern_destroy(pattern);
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_fill_preserve(cr);
releaseCairoContext(cr, true, extents);
return true;
}
bool CairoCommon::implDrawGradient(basegfx::B2DPolyPolygon const& rPolyPolygon,
SalGradient const& rGradient, bool bAntiAlias)
{
cairo_t* cr = getCairoContext(true, bAntiAlias);
basegfx::B2DHomMatrix rObjectToDevice;
for (auto const& rPolygon : rPolyPolygon)
AddPolygonToPath(cr, rPolygon, rObjectToDevice, !bAntiAlias, false);
cairo_pattern_t* pattern
= cairo_pattern_create_linear(rGradient.maPoint1.getX(), rGradient.maPoint1.getY(),
rGradient.maPoint2.getX(), rGradient.maPoint2.getY());
for (SalGradientStop const& rStop : rGradient.maStops)
{
double r = rStop.maColor.GetRed() / 255.0;
double g = rStop.maColor.GetGreen() / 255.0;
double b = rStop.maColor.GetBlue() / 255.0;
double a = rStop.maColor.GetAlpha() / 255.0;
double offset = rStop.mfOffset;
cairo_pattern_add_color_stop_rgba(pattern, offset, r, g, b, a);
}
cairo_set_source(cr, pattern);
cairo_pattern_destroy(pattern);
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_fill_preserve(cr);
releaseCairoContext(cr, true, extents);
return true;
}
namespace
{
basegfx::B2DRange renderWithOperator(cairo_t* cr, const SalTwoRect& rTR, cairo_surface_t* source,
cairo_operator_t eOperator = CAIRO_OPERATOR_SOURCE)
{
cairo_rectangle(cr, rTR.mnDestX, rTR.mnDestY, rTR.mnDestWidth, rTR.mnDestHeight);
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_clip(cr);
cairo_translate(cr, rTR.mnDestX, rTR.mnDestY);
if (rTR.mnSrcWidth != 0 && rTR.mnSrcHeight != 0)
{
double fXScale = static_cast<double>(rTR.mnDestWidth) / rTR.mnSrcWidth;
double fYScale = static_cast<double>(rTR.mnDestHeight) / rTR.mnSrcHeight;
cairo_scale(cr, fXScale, fYScale);
}
cairo_save(cr);
cairo_set_source_surface(cr, source, -rTR.mnSrcX, -rTR.mnSrcY);
if (cairo_status(cr) == CAIRO_STATUS_SUCCESS)
{
//tdf#133716 borders of upscaled images should not be blurred
cairo_pattern_t* sourcepattern = cairo_get_source(cr);
cairo_pattern_set_extend(sourcepattern, CAIRO_EXTEND_PAD);
}
cairo_set_operator(cr, eOperator);
cairo_paint(cr);
cairo_restore(cr);
return extents;
}
} // end anonymous ns
basegfx::B2DRange CairoCommon::renderSource(cairo_t* cr, const SalTwoRect& rTR,
cairo_surface_t* source)
{
return renderWithOperator(cr, rTR, source, CAIRO_OPERATOR_SOURCE);
}
void CairoCommon::copyWithOperator(const SalTwoRect& rTR, cairo_surface_t* source,
cairo_operator_t eOp, bool bAntiAlias)
{
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
basegfx::B2DRange extents = renderWithOperator(cr, rTR, source, eOp);
releaseCairoContext(cr, false, extents);
}
void CairoCommon::copySource(const SalTwoRect& rTR, cairo_surface_t* source, bool bAntiAlias)
{
copyWithOperator(rTR, source, CAIRO_OPERATOR_SOURCE, bAntiAlias);
}
void CairoCommon::copyBitsCairo(const SalTwoRect& rTR, cairo_surface_t* pSourceSurface,
bool bAntiAlias)
{
SalTwoRect aTR(rTR);
cairo_surface_t* pCopy = nullptr;
if (pSourceSurface == getSurface())
{
//self copy is a problem, so dup source in that case
pCopy
= cairo_surface_create_similar(pSourceSurface, cairo_surface_get_content(getSurface()),
aTR.mnSrcWidth * m_fScale, aTR.mnSrcHeight * m_fScale);
dl_cairo_surface_set_device_scale(pCopy, m_fScale, m_fScale);
cairo_t* cr = cairo_create(pCopy);
cairo_set_source_surface(cr, pSourceSurface, -aTR.mnSrcX, -aTR.mnSrcY);
cairo_rectangle(cr, 0, 0, aTR.mnSrcWidth, aTR.mnSrcHeight);
cairo_fill(cr);
cairo_destroy(cr);
pSourceSurface = pCopy;
aTR.mnSrcX = 0;
aTR.mnSrcY = 0;
}
copySource(aTR, pSourceSurface, bAntiAlias);
if (pCopy)
cairo_surface_destroy(pCopy);
}
namespace
{
cairo_pattern_t* create_stipple()
{
static unsigned char data[16] = { 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF };
cairo_surface_t* surface = cairo_image_surface_create_for_data(data, CAIRO_FORMAT_A8, 4, 4, 4);
cairo_pattern_t* pattern = cairo_pattern_create_for_surface(surface);
cairo_surface_destroy(surface);
cairo_pattern_set_extend(pattern, CAIRO_EXTEND_REPEAT);
cairo_pattern_set_filter(pattern, CAIRO_FILTER_NEAREST);
return pattern;
}
} // end anonymous ns
void CairoCommon::invert(const basegfx::B2DPolygon& rPoly, SalInvert nFlags, bool bAntiAlias)
{
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
// To make releaseCairoContext work, use empty extents
basegfx::B2DRange extents;
AddPolygonToPath(cr, rPoly, basegfx::B2DHomMatrix(), !bAntiAlias, false);
cairo_set_source_rgb(cr, 1.0, 1.0, 1.0);
cairo_set_operator(cr, CAIRO_OPERATOR_DIFFERENCE);
if (nFlags & SalInvert::TrackFrame)
{
cairo_set_line_width(cr, 2.0);
const double dashLengths[2] = { 4.0, 4.0 };
cairo_set_dash(cr, dashLengths, 2, 0);
extents = getClippedStrokeDamage(cr);
//see tdf#106577 under wayland, some pixel droppings seen, maybe we're
//out by one somewhere, or cairo_stroke_extents is confused by
//dashes/line width
if (!extents.isEmpty())
{
extents.grow(1);
}
cairo_stroke(cr);
}
else
{
extents = getClippedFillDamage(cr);
cairo_clip(cr);
if (nFlags & SalInvert::N50)
{
cairo_pattern_t* pattern = create_stipple();
cairo_surface_t* surface = cairo_surface_create_similar(
m_pSurface, cairo_surface_get_content(m_pSurface), extents.getWidth() * m_fScale,
extents.getHeight() * m_fScale);
dl_cairo_surface_set_device_scale(surface, m_fScale, m_fScale);
cairo_t* stipple_cr = cairo_create(surface);
cairo_set_source_rgb(stipple_cr, 1.0, 1.0, 1.0);
cairo_mask(stipple_cr, pattern);
cairo_pattern_destroy(pattern);
cairo_destroy(stipple_cr);
cairo_mask_surface(cr, surface, extents.getMinX(), extents.getMinY());
cairo_surface_destroy(surface);
}
else
{
cairo_paint(cr);
}
}
releaseCairoContext(cr, false, extents);
}
void CairoCommon::invert(tools::Long nX, tools::Long nY, tools::Long nWidth, tools::Long nHeight,
SalInvert nFlags, bool bAntiAlias)
{
basegfx::B2DPolygon aRect = basegfx::utils::createPolygonFromRect(
basegfx::B2DRectangle(nX, nY, nX + nWidth, nY + nHeight));
invert(aRect, nFlags, bAntiAlias);
}
void CairoCommon::invert(sal_uInt32 nPoints, const Point* pPtAry, SalInvert nFlags, bool bAntiAlias)
{
basegfx::B2DPolygon aPoly;
aPoly.append(basegfx::B2DPoint(pPtAry->getX(), pPtAry->getY()), nPoints);
for (sal_uInt32 i = 1; i < nPoints; ++i)
aPoly.setB2DPoint(i, basegfx::B2DPoint(pPtAry[i].getX(), pPtAry[i].getY()));
aPoly.setClosed(true);
invert(aPoly, nFlags, bAntiAlias);
}
void CairoCommon::drawBitmap(const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap,
bool bAntiAlias)
{
// MM02 try to access buffered BitmapHelper
std::shared_ptr<BitmapHelper> aSurface;
tryToUseSourceBuffer(rSalBitmap, aSurface);
cairo_surface_t* source = aSurface->getSurface(rPosAry.mnDestWidth, rPosAry.mnDestHeight);
if (!source)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawAlphaBitmap case");
return;
}
#if 0 // LO code is not yet bitmap32-ready.
// if m_bSupportsBitmap32 becomes true for Svp revisit this
copyWithOperator(rPosAry, source, CAIRO_OPERATOR_OVER, bAntiAlias);
#else
copyWithOperator(rPosAry, source, CAIRO_OPERATOR_SOURCE, bAntiAlias);
#endif
}
bool CairoCommon::drawAlphaBitmap(const SalTwoRect& rTR, const SalBitmap& rSourceBitmap,
const SalBitmap& rAlphaBitmap, bool bAntiAlias)
{
if (rAlphaBitmap.GetBitCount() != 8 && rAlphaBitmap.GetBitCount() != 1)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawAlphaBitmap alpha depth case: "
<< rAlphaBitmap.GetBitCount());
return false;
}
if (!rTR.mnSrcWidth || !rTR.mnSrcHeight)
{
SAL_WARN("vcl.gdi", "not possible to stretch nothing");
return true;
}
// MM02 try to access buffered BitmapHelper
std::shared_ptr<BitmapHelper> aSurface;
tryToUseSourceBuffer(rSourceBitmap, aSurface);
cairo_surface_t* source = aSurface->getSurface(rTR.mnDestWidth, rTR.mnDestHeight);
if (!source)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawAlphaBitmap case");
return false;
}
// MM02 try to access buffered MaskHelper
std::shared_ptr<MaskHelper> aMask;
tryToUseMaskBuffer(rAlphaBitmap, aMask);
cairo_surface_t* mask = aMask->getSurface(rTR.mnDestWidth, rTR.mnDestHeight);
if (!mask)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawAlphaBitmap case");
return false;
}
cairo_t* cr = getCairoContext(false, bAntiAlias);
if (cairo_status(cr) != CAIRO_STATUS_SUCCESS)
{
SAL_WARN("vcl.gdi",
"cannot render to surface: " << cairo_status_to_string(cairo_status(cr)));
releaseCairoContext(cr, false, basegfx::B2DRange());
return true;
}
clipRegion(cr);
cairo_rectangle(cr, rTR.mnDestX, rTR.mnDestY, rTR.mnDestWidth, rTR.mnDestHeight);
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_clip(cr);
cairo_pattern_t* maskpattern = cairo_pattern_create_for_surface(mask);
cairo_translate(cr, rTR.mnDestX, rTR.mnDestY);
double fXScale = static_cast<double>(rTR.mnDestWidth) / rTR.mnSrcWidth;
double fYScale = static_cast<double>(rTR.mnDestHeight) / rTR.mnSrcHeight;
cairo_scale(cr, fXScale, fYScale);
cairo_set_source_surface(cr, source, -rTR.mnSrcX, -rTR.mnSrcY);
cairo_pattern_t* sourcepattern = cairo_get_source(cr);
//tdf#133716 borders of upscaled images should not be blurred
//tdf#114117 when stretching a single or multi pixel width/height source to fit an area
//the image will be extended into that size.
cairo_pattern_set_extend(sourcepattern, CAIRO_EXTEND_PAD);
cairo_pattern_set_extend(maskpattern, CAIRO_EXTEND_PAD);
//this block is just "cairo_mask_surface", but we have to make it explicit
//because of the cairo_pattern_set_filter etc we may want applied
cairo_matrix_t matrix;
cairo_matrix_init_translate(&matrix, rTR.mnSrcX, rTR.mnSrcY);
cairo_pattern_set_matrix(maskpattern, &matrix);
cairo_mask(cr, maskpattern);
cairo_pattern_destroy(maskpattern);
releaseCairoContext(cr, false, extents);
return true;
}
bool CairoCommon::drawTransformedBitmap(const basegfx::B2DPoint& rNull, const basegfx::B2DPoint& rX,
const basegfx::B2DPoint& rY, const SalBitmap& rSourceBitmap,
const SalBitmap* pAlphaBitmap, double fAlpha,
bool bAntiAlias)
{
if (pAlphaBitmap && pAlphaBitmap->GetBitCount() != 8 && pAlphaBitmap->GetBitCount() != 1)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawTransformedBitmap alpha depth case: "
<< pAlphaBitmap->GetBitCount());
return false;
}
if (fAlpha != 1.0)
return false;
// MM02 try to access buffered BitmapHelper
std::shared_ptr<BitmapHelper> aSurface;
tryToUseSourceBuffer(rSourceBitmap, aSurface);
const tools::Long nDestWidth(basegfx::fround(basegfx::B2DVector(rX - rNull).getLength()));
const tools::Long nDestHeight(basegfx::fround(basegfx::B2DVector(rY - rNull).getLength()));
cairo_surface_t* source(aSurface->getSurface(nDestWidth, nDestHeight));
if (!source)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawTransformedBitmap case");
return false;
}
// MM02 try to access buffered MaskHelper
std::shared_ptr<MaskHelper> aMask;
if (nullptr != pAlphaBitmap)
{
tryToUseMaskBuffer(*pAlphaBitmap, aMask);
}
// access cairo_surface_t from MaskHelper
cairo_surface_t* mask(nullptr);
if (aMask)
{
mask = aMask->getSurface(nDestWidth, nDestHeight);
}
if (nullptr != pAlphaBitmap && nullptr == mask)
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawTransformedBitmap case");
return false;
}
const Size aSize = rSourceBitmap.GetSize();
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
// setup the image transformation
// using the rNull,rX,rY points as destinations for the (0,0),(0,Width),(Height,0) source points
const basegfx::B2DVector aXRel = rX - rNull;
const basegfx::B2DVector aYRel = rY - rNull;
cairo_matrix_t matrix;
cairo_matrix_init(&matrix, aXRel.getX() / aSize.Width(), aXRel.getY() / aSize.Width(),
aYRel.getX() / aSize.Height(), aYRel.getY() / aSize.Height(), rNull.getX(),
rNull.getY());
cairo_transform(cr, &matrix);
cairo_rectangle(cr, 0, 0, aSize.Width(), aSize.Height());
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_clip(cr);
cairo_set_source_surface(cr, source, 0, 0);
if (mask)
cairo_mask_surface(cr, mask, 0, 0);
else
cairo_paint(cr);
releaseCairoContext(cr, false, extents);
return true;
}
void CairoCommon::drawMask(const SalTwoRect& rTR, const SalBitmap& rSalBitmap, Color nMaskColor,
bool bAntiAlias)
{
/** creates an image from the given rectangle, replacing all black pixels
* with nMaskColor and make all other full transparent */
// MM02 here decided *against* using buffered BitmapHelper
// because the data gets somehow 'unmuliplied'. This may also be
// done just once, but I am not sure if this is safe to do.
// So for now dispense re-using data here.
BitmapHelper aSurface(rSalBitmap, true); // The mask is argb32
if (!aSurface.getSurface())
{
SAL_WARN("vcl.gdi", "unsupported SvpSalGraphics::drawMask case");
return;
}
sal_Int32 nStride;
unsigned char* mask_data = aSurface.getBits(nStride);
#if !ENABLE_WASM_STRIP_PREMULTIPLY
vcl::bitmap::lookup_table const& unpremultiply_table = vcl::bitmap::get_unpremultiply_table();
#endif
for (tools::Long y = rTR.mnSrcY; y < rTR.mnSrcY + rTR.mnSrcHeight; ++y)
{
unsigned char* row = mask_data + (nStride * y);
unsigned char* data = row + (rTR.mnSrcX * 4);
for (tools::Long x = rTR.mnSrcX; x < rTR.mnSrcX + rTR.mnSrcWidth; ++x)
{
sal_uInt8 a = data[SVP_CAIRO_ALPHA];
#if ENABLE_WASM_STRIP_PREMULTIPLY
sal_uInt8 b = vcl::bitmap::unpremultiply(data[SVP_CAIRO_BLUE], a);
sal_uInt8 g = vcl::bitmap::unpremultiply(data[SVP_CAIRO_GREEN], a);
sal_uInt8 r = vcl::bitmap::unpremultiply(data[SVP_CAIRO_RED], a);
#else
sal_uInt8 b = unpremultiply_table[a][data[SVP_CAIRO_BLUE]];
sal_uInt8 g = unpremultiply_table[a][data[SVP_CAIRO_GREEN]];
sal_uInt8 r = unpremultiply_table[a][data[SVP_CAIRO_RED]];
#endif
if (r == 0 && g == 0 && b == 0)
{
data[0] = nMaskColor.GetBlue();
data[1] = nMaskColor.GetGreen();
data[2] = nMaskColor.GetRed();
data[3] = 0xff;
}
else
{
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
}
data += 4;
}
}
aSurface.mark_dirty();
cairo_t* cr = getCairoContext(false, bAntiAlias);
clipRegion(cr);
cairo_rectangle(cr, rTR.mnDestX, rTR.mnDestY, rTR.mnDestWidth, rTR.mnDestHeight);
basegfx::B2DRange extents = getClippedFillDamage(cr);
cairo_clip(cr);
cairo_translate(cr, rTR.mnDestX, rTR.mnDestY);
double fXScale = static_cast<double>(rTR.mnDestWidth) / rTR.mnSrcWidth;
double fYScale = static_cast<double>(rTR.mnDestHeight) / rTR.mnSrcHeight;
cairo_scale(cr, fXScale, fYScale);
cairo_set_source_surface(cr, aSurface.getSurface(), -rTR.mnSrcX, -rTR.mnSrcY);
if (cairo_status(cr) == CAIRO_STATUS_SUCCESS)
{
//tdf#133716 borders of upscaled images should not be blurred
cairo_pattern_t* sourcepattern = cairo_get_source(cr);
cairo_pattern_set_extend(sourcepattern, CAIRO_EXTEND_PAD);
}
cairo_paint(cr);
releaseCairoContext(cr, false, extents);
}
std::shared_ptr<SalBitmap> CairoCommon::getBitmap(tools::Long nX, tools::Long nY,
tools::Long nWidth, tools::Long nHeight)
{
std::shared_ptr<SvpSalBitmap> pBitmap = std::make_shared<SvpSalBitmap>();
BitmapPalette aPal;
assert(GetBitCount() != 1 && "not supported anymore");
vcl::PixelFormat ePixelFormat = vcl::PixelFormat::N32_BPP;
if (!pBitmap->ImplCreate(Size(nWidth, nHeight), ePixelFormat, aPal, false))
{
SAL_WARN("vcl.gdi", "SvpSalGraphics::getBitmap, cannot create bitmap");
return nullptr;
}
cairo_surface_t* target = CairoCommon::createCairoSurface(pBitmap->GetBuffer());
if (!target)
{
SAL_WARN("vcl.gdi", "SvpSalGraphics::getBitmap, cannot create cairo surface");
return nullptr;
}
cairo_t* cr = cairo_create(target);
SalTwoRect aTR(nX, nY, nWidth, nHeight, 0, 0, nWidth, nHeight);
CairoCommon::renderSource(cr, aTR, m_pSurface);
cairo_destroy(cr);
cairo_surface_destroy(target);
return pBitmap;
}
cairo_format_t getCairoFormat(const BitmapBuffer& rBuffer)
{
cairo_format_t nFormat;
#ifdef HAVE_CAIRO_FORMAT_RGB24_888
assert(rBuffer.mnBitCount == 32 || rBuffer.mnBitCount == 24 || rBuffer.mnBitCount == 1);
#else
assert(rBuffer.mnBitCount == 32 || rBuffer.mnBitCount == 1);
#endif
if (rBuffer.mnBitCount == 32)
nFormat = CAIRO_FORMAT_ARGB32;
#ifdef HAVE_CAIRO_FORMAT_RGB24_888
else if (rBuffer.mnBitCount == 24)
nFormat = CAIRO_FORMAT_RGB24_888;
#endif
else
nFormat = CAIRO_FORMAT_A1;
return nFormat;
}
namespace
{
bool isCairoCompatible(const BitmapBuffer* pBuffer)
{
if (!pBuffer)
return false;
// We use Cairo that supports 24-bit RGB.
#ifdef HAVE_CAIRO_FORMAT_RGB24_888
if (pBuffer->mnBitCount != 32 && pBuffer->mnBitCount != 24 && pBuffer->mnBitCount != 1)
#else
if (pBuffer->mnBitCount != 32 && pBuffer->mnBitCount != 1)
#endif
return false;
cairo_format_t nFormat = getCairoFormat(*pBuffer);
return (cairo_format_stride_for_width(nFormat, pBuffer->mnWidth) == pBuffer->mnScanlineSize);
}
}
cairo_surface_t* CairoCommon::createCairoSurface(const BitmapBuffer* pBuffer)
{
if (!isCairoCompatible(pBuffer))
return nullptr;
cairo_format_t nFormat = getCairoFormat(*pBuffer);
cairo_surface_t* target = cairo_image_surface_create_for_data(
pBuffer->mpBits, nFormat, pBuffer->mnWidth, pBuffer->mnHeight, pBuffer->mnScanlineSize);
if (cairo_surface_status(target) != CAIRO_STATUS_SUCCESS)
{
cairo_surface_destroy(target);
return nullptr;
}
return target;
}
bool CairoCommon::hasFastDrawTransformedBitmap() { return false; }
bool CairoCommon::supportsOperation(OutDevSupportType eType)
{
switch (eType)
{
case OutDevSupportType::TransparentRect:
case OutDevSupportType::TransparentText:
return true;
}
return false;
}
std::optional<BitmapBuffer> FastConvert24BitRgbTo32BitCairo(const BitmapBuffer* pSrc)
{
if (pSrc == nullptr)
return std::nullopt;
assert(pSrc->meFormat == SVP_24BIT_FORMAT);
const tools::Long nWidth = pSrc->mnWidth;
const tools::Long nHeight = pSrc->mnHeight;
std::optional<BitmapBuffer> pDst(std::in_place);
pDst->meFormat = ScanlineFormat::N32BitTcArgb;
pDst->meDirection = ScanlineDirection::TopDown;
pDst->mnWidth = nWidth;
pDst->mnHeight = nHeight;
pDst->mnBitCount = 32;
pDst->maColorMask = pSrc->maColorMask;
pDst->maPalette = pSrc->maPalette;
tools::Long nScanlineBase;
const bool bFail = o3tl::checked_multiply<tools::Long>(pDst->mnBitCount, nWidth, nScanlineBase);
if (bFail)
{
SAL_WARN("vcl.gdi", "checked multiply failed");
pDst->mpBits = nullptr;
return std::nullopt;
}
pDst->mnScanlineSize = AlignedWidth4Bytes(nScanlineBase);
if (pDst->mnScanlineSize < nScanlineBase / 8)
{
SAL_WARN("vcl.gdi", "scanline calculation wraparound");
pDst->mpBits = nullptr;
return std::nullopt;
}
try
{
pDst->mpBits = new sal_uInt8[pDst->mnScanlineSize * nHeight];
}
catch (const std::bad_alloc&)
{
// memory exception, clean up
pDst->mpBits = nullptr;
return std::nullopt;
}
for (tools::Long y = 0; y < nHeight; ++y)
{
sal_uInt8* pS = pSrc->mpBits + y * pSrc->mnScanlineSize;
sal_uInt8* pD = pDst->mpBits + y * pDst->mnScanlineSize;
for (tools::Long x = 0; x < nWidth; ++x)
{
#if ENABLE_CAIRO_RGBA
static_assert(SVP_CAIRO_FORMAT == ScanlineFormat::N32BitTcRgba,
"Expected SVP_CAIRO_FORMAT set to N32BitTcBgra");
static_assert(SVP_24BIT_FORMAT == ScanlineFormat::N24BitTcRgb,
"Expected SVP_24BIT_FORMAT set to N24BitTcRgb");
pD[0] = pS[0];
pD[1] = pS[1];
pD[2] = pS[2];
pD[3] = 0xff; // Alpha
#elif defined OSL_BIGENDIAN
static_assert(SVP_CAIRO_FORMAT == ScanlineFormat::N32BitTcArgb,
"Expected SVP_CAIRO_FORMAT set to N32BitTcBgra");
static_assert(SVP_24BIT_FORMAT == ScanlineFormat::N24BitTcRgb,
"Expected SVP_24BIT_FORMAT set to N24BitTcRgb");
pD[0] = 0xff; // Alpha
pD[1] = pS[0];
pD[2] = pS[1];
pD[3] = pS[2];
#else
static_assert(SVP_CAIRO_FORMAT == ScanlineFormat::N32BitTcBgra,
"Expected SVP_CAIRO_FORMAT set to N32BitTcBgra");
static_assert(SVP_24BIT_FORMAT == ScanlineFormat::N24BitTcBgr,
"Expected SVP_24BIT_FORMAT set to N24BitTcBgr");
pD[0] = pS[0];
pD[1] = pS[1];
pD[2] = pS[2];
pD[3] = 0xff; // Alpha
#endif
pS += 3;
pD += 4;
}
}
return pDst;
}
namespace
{
// check for env var that decides for using downscale pattern
const char* pDisableDownScale(getenv("SAL_DISABLE_CAIRO_DOWNSCALE"));
bool bDisableDownScale(nullptr != pDisableDownScale);
}
cairo_surface_t* SurfaceHelper::implCreateOrReuseDownscale(unsigned long nTargetWidth,
unsigned long nTargetHeight)
{
const unsigned long nSourceWidth(cairo_image_surface_get_width(pSurface));
const unsigned long nSourceHeight(cairo_image_surface_get_height(pSurface));
// zoomed in, need to stretch at paint, no pre-scale useful
if (nTargetWidth >= nSourceWidth || nTargetHeight >= nSourceHeight)
{
return pSurface;
}
// calculate downscale factor
unsigned long nWFactor(1);
unsigned long nW((nSourceWidth + 1) / 2);
unsigned long nHFactor(1);
unsigned long nH((nSourceHeight + 1) / 2);
while (nW > nTargetWidth && nW > 1)
{
nW = (nW + 1) / 2;
nWFactor *= 2;
}
while (nH > nTargetHeight && nH > 1)
{
nH = (nH + 1) / 2;
nHFactor *= 2;
}
if (1 == nWFactor && 1 == nHFactor)
{
// original size *is* best binary size, use it
return pSurface;
}
// go up one scale again - look for no change
nW = (1 == nWFactor) ? nTargetWidth : nW * 2;
nH = (1 == nHFactor) ? nTargetHeight : nH * 2;
// check if we have a downscaled version of required size
// bail out if the multiplication for the key would overflow
if (nW >= SAL_MAX_UINT32 || nH >= SAL_MAX_UINT32)
return pSurface;
const sal_uInt64 key((nW * static_cast<sal_uInt64>(SAL_MAX_UINT32)) + nH);
auto isHit(maDownscaled.find(key));
if (isHit != maDownscaled.end())
{
return isHit->second;
}
// create new surface in the targeted size
cairo_surface_t* pSurfaceTarget
= cairo_surface_create_similar(pSurface, cairo_surface_get_content(pSurface), nW, nH);
// made a version to scale self first that worked well, but would've
// been hard to support CAIRO_FORMAT_A1 including bit shifting, so
// I decided to go with cairo itself - use CAIRO_FILTER_FAST or
// CAIRO_FILTER_GOOD though. Please modify as needed for
// performance/quality
cairo_t* cr = cairo_create(pSurfaceTarget);
const double fScaleX(static_cast<double>(nW) / static_cast<double>(nSourceWidth));
const double fScaleY(static_cast<double>(nH) / static_cast<double>(nSourceHeight));
cairo_scale(cr, fScaleX, fScaleY);
cairo_set_source_surface(cr, pSurface, 0.0, 0.0);
cairo_pattern_set_filter(cairo_get_source(cr), CAIRO_FILTER_GOOD);
cairo_paint(cr);
cairo_destroy(cr);
// need to set device_scale for downscale surfaces to get
// them handled correctly
cairo_surface_set_device_scale(pSurfaceTarget, fScaleX, fScaleY);
// add entry to cached entries
maDownscaled[key] = pSurfaceTarget;
return pSurfaceTarget;
}
bool SurfaceHelper::isTrivial() const
{
constexpr unsigned long nMinimalSquareSizeToBuffer(64 * 64);
const unsigned long nSourceWidth(cairo_image_surface_get_width(pSurface));
const unsigned long nSourceHeight(cairo_image_surface_get_height(pSurface));
return nSourceWidth * nSourceHeight < nMinimalSquareSizeToBuffer;
}
SurfaceHelper::SurfaceHelper()
: pSurface(nullptr)
{
}
SurfaceHelper::~SurfaceHelper()
{
cairo_surface_destroy(pSurface);
for (auto& candidate : maDownscaled)
{
cairo_surface_destroy(candidate.second);
}
}
cairo_surface_t* SurfaceHelper::getSurface(unsigned long nTargetWidth,
unsigned long nTargetHeight) const
{
if (bDisableDownScale || 0 == nTargetWidth || 0 == nTargetHeight || !pSurface || isTrivial())
{
// caller asks for original or disabled or trivial (smaller then a minimal square size)
// also excludes zero cases for width/height after this point if need to prescale
return pSurface;
}
return const_cast<SurfaceHelper*>(this)->implCreateOrReuseDownscale(nTargetWidth,
nTargetHeight);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V501 There are identical sub-expressions 'ScanlineFormat::N32BitTcBgra' to the left and to the right of the '==' operator.
↑ V501 There are identical sub-expressions 'ScanlineFormat::N24BitTcBgr' to the left and to the right of the '==' operator.
↑ V516 Consider inspecting an odd expression. Non-null function pointer is compared to null: 'nullptr != pDisableDownScale'.
↑ V530 The return value of function 'renderSource' is required to be utilized.
↑ V560 A part of conditional expression is always false: !bDoDirectCairoStroke.
↑ V560 A part of conditional expression is always false: !bDoDirectCairoStroke.
↑ V584 The 'ScanlineFormat::N32BitTcBgra' value is present on both sides of the '==' operator. The expression is incorrect or it can be simplified.
↑ V584 The 'ScanlineFormat::N24BitTcBgr' value is present on both sides of the '==' operator. The expression is incorrect or it can be simplified.
↑ V728 An excessive check can be simplified. The '||' operator is surrounded by opposite expressions '!bStrokeUsed' and 'bStrokeUsed'.