/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <comphelper/crypto/Crypto.hxx>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <sal/types.h>
#include <config_oox.h>
#if USE_TLS_OPENSSL
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <openssl/hmac.h>
#endif // USE_TLS_OPENSSL
#if USE_TLS_NSS
#include <nss.h>
#include <nspr.h>
#include <pk11pub.h>
#endif // USE_TLS_NSS
namespace comphelper
{
#if USE_TLS_OPENSSL
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
static HMAC_CTX* HMAC_CTX_new(void)
{
HMAC_CTX* pContext = new HMAC_CTX;
HMAC_CTX_init(pContext);
return pContext;
}
static void HMAC_CTX_free(HMAC_CTX* pContext)
{
HMAC_CTX_cleanup(pContext);
delete pContext;
}
#endif
namespace
{
struct cipher_delete
{
void operator()(EVP_CIPHER_CTX* p) { EVP_CIPHER_CTX_free(p); }
};
struct hmac_delete
{
SAL_WNODEPRECATED_DECLARATIONS_PUSH // 'HMAC_CTX_free' is deprecated
void
operator()(HMAC_CTX* p)
{
HMAC_CTX_free(p);
}
SAL_WNODEPRECATED_DECLARATIONS_POP
};
}
struct CryptoImpl
{
std::unique_ptr<EVP_CIPHER_CTX, cipher_delete> mpContext;
std::unique_ptr<HMAC_CTX, hmac_delete> mpHmacContext;
CryptoImpl() = default;
void setupEncryptContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv,
CryptoType eType)
{
mpContext.reset(EVP_CIPHER_CTX_new());
EVP_CIPHER_CTX_init(mpContext.get());
const EVP_CIPHER* cipher = getCipher(eType);
if (cipher == nullptr)
return;
if (iv.empty())
EVP_EncryptInit_ex(mpContext.get(), cipher, nullptr, key.data(), nullptr);
else
EVP_EncryptInit_ex(mpContext.get(), cipher, nullptr, key.data(), iv.data());
EVP_CIPHER_CTX_set_padding(mpContext.get(), 0);
}
void setupDecryptContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv,
CryptoType eType)
{
mpContext.reset(EVP_CIPHER_CTX_new());
EVP_CIPHER_CTX_init(mpContext.get());
const EVP_CIPHER* pCipher = getCipher(eType);
if (pCipher == nullptr)
return;
const size_t nMinKeySize = EVP_CIPHER_key_length(pCipher);
if (key.size() < nMinKeySize)
key.resize(nMinKeySize, 0);
if (iv.empty())
EVP_DecryptInit_ex(mpContext.get(), pCipher, nullptr, key.data(), nullptr);
else
{
const size_t nMinIVSize = EVP_CIPHER_iv_length(pCipher);
if (iv.size() < nMinIVSize)
iv.resize(nMinIVSize, 0);
EVP_DecryptInit_ex(mpContext.get(), pCipher, nullptr, key.data(), iv.data());
}
EVP_CIPHER_CTX_set_padding(mpContext.get(), 0);
}
void setupCryptoHashContext(std::vector<sal_uInt8>& rKey, CryptoHashType eType)
{
SAL_WNODEPRECATED_DECLARATIONS_PUSH // 'HMAC_CTX_new' is deprecated
mpHmacContext.reset(HMAC_CTX_new());
SAL_WNODEPRECATED_DECLARATIONS_POP
const EVP_MD* aEvpMd = nullptr;
switch (eType)
{
case CryptoHashType::SHA1:
aEvpMd = EVP_sha1();
break;
case CryptoHashType::SHA256:
aEvpMd = EVP_sha256();
break;
case CryptoHashType::SHA384:
aEvpMd = EVP_sha384();
break;
case CryptoHashType::SHA512:
aEvpMd = EVP_sha512();
break;
}
SAL_WNODEPRECATED_DECLARATIONS_PUSH // 'HMAC_Init_ex' is deprecated
HMAC_Init_ex(mpHmacContext.get(), rKey.data(), rKey.size(), aEvpMd, nullptr);
SAL_WNODEPRECATED_DECLARATIONS_POP
}
~CryptoImpl()
{
if (mpContext)
EVP_CIPHER_CTX_cleanup(mpContext.get());
}
static const EVP_CIPHER* getCipher(CryptoType type)
{
switch (type)
{
case CryptoType::AES_128_ECB:
return EVP_aes_128_ecb();
case CryptoType::AES_256_ECB:
return EVP_aes_256_ecb();
case CryptoType::AES_128_CBC:
return EVP_aes_128_cbc();
case CryptoType::AES_256_CBC:
return EVP_aes_256_cbc();
default:
break;
}
return nullptr;
}
};
#elif USE_TLS_NSS
#define MAX_WRAPPED_KEY_LEN 128
struct CryptoImpl
{
PK11SlotInfo* mSlot;
PK11Context* mContext;
SECItem* mSecParam;
PK11SymKey* mSymKey;
PK11Context* mWrapKeyContext;
PK11SymKey* mWrapKey;
CryptoImpl()
: mSlot(nullptr)
, mContext(nullptr)
, mSecParam(nullptr)
, mSymKey(nullptr)
, mWrapKeyContext(nullptr)
, mWrapKey(nullptr)
{
// Initialize NSS, database functions are not needed
if (!NSS_IsInitialized())
{
auto const e = NSS_NoDB_Init(nullptr);
if (e != SECSuccess)
{
PRErrorCode error = PR_GetError();
const char* errorText = PR_ErrorToName(error);
throw css::uno::RuntimeException(
"NSS_NoDB_Init failed with "
+ OUString(errorText, strlen(errorText), RTL_TEXTENCODING_UTF8) + " ("
+ OUString::number(static_cast<int>(error)) + ")");
}
}
}
~CryptoImpl()
{
if (mContext)
PK11_DestroyContext(mContext, PR_TRUE);
if (mSecParam)
SECITEM_FreeItem(mSecParam, PR_TRUE);
if (mSymKey)
PK11_FreeSymKey(mSymKey);
if (mWrapKeyContext)
PK11_DestroyContext(mWrapKeyContext, PR_TRUE);
if (mWrapKey)
PK11_FreeSymKey(mWrapKey);
if (mSlot)
PK11_FreeSlot(mSlot);
}
PK11SymKey* ImportSymKey(CK_MECHANISM_TYPE mechanism, CK_ATTRIBUTE_TYPE operation, SECItem* key)
{
mSymKey = PK11_ImportSymKey(mSlot, mechanism, PK11_OriginUnwrap, operation, key, nullptr);
if (!mSymKey) //rhbz#1614419 maybe failed due to FIPS, use rhbz#1461450 style workaround
{
/*
* Without FIPS it would be possible to just use
* mSymKey = PK11_ImportSymKey( mSlot, mechanism, PK11_OriginUnwrap, CKA_ENCRYPT, &keyItem, nullptr );
* with FIPS NSS Level 2 certification has to be "workarounded" (so it becomes Level 1) by using
* following method:
* 1. Generate wrap key
* 2. Encrypt authkey with wrap key
* 3. Unwrap encrypted authkey using wrap key
*/
/*
* Generate wrapping key
*/
CK_MECHANISM_TYPE wrap_mechanism = PK11_GetBestWrapMechanism(mSlot);
int wrap_key_len = PK11_GetBestKeyLength(mSlot, wrap_mechanism);
mWrapKey = PK11_KeyGen(mSlot, wrap_mechanism, nullptr, wrap_key_len, nullptr);
if (!mWrapKey)
throw css::uno::RuntimeException(u"PK11_KeyGen SymKey failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
/*
* Encrypt authkey with wrapping key
*/
/*
* Initialization of IV is not needed because PK11_GetBestWrapMechanism should return ECB mode
*/
SECItem tmp_sec_item = {};
mWrapKeyContext
= PK11_CreateContextBySymKey(wrap_mechanism, CKA_ENCRYPT, mWrapKey, &tmp_sec_item);
if (!mWrapKeyContext)
throw css::uno::RuntimeException(u"PK11_CreateContextBySymKey failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
unsigned char wrapped_key_data[MAX_WRAPPED_KEY_LEN];
int wrapped_key_len = sizeof(wrapped_key_data);
if (PK11_CipherOp(mWrapKeyContext, wrapped_key_data, &wrapped_key_len,
sizeof(wrapped_key_data), key->data, key->len)
!= SECSuccess)
{
throw css::uno::RuntimeException(u"PK11_CipherOp failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
}
if (PK11_Finalize(mWrapKeyContext) != SECSuccess)
throw css::uno::RuntimeException(u"PK11_Finalize failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
/*
* Finally unwrap sym key
*/
SECItem wrapped_key = {};
wrapped_key.data = wrapped_key_data;
wrapped_key.len = wrapped_key_len;
mSymKey = PK11_UnwrapSymKey(mWrapKey, wrap_mechanism, &tmp_sec_item, &wrapped_key,
mechanism, operation, key->len);
}
return mSymKey;
}
void setupEncryptContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv,
CryptoType type)
{
setupCryptoContext(key, iv, type, CKA_ENCRYPT);
}
void setupDecryptContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv,
CryptoType type)
{
setupCryptoContext(key, iv, type, CKA_DECRYPT);
}
void setupCryptoContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv,
CryptoType type, CK_ATTRIBUTE_TYPE operation)
{
CK_MECHANISM_TYPE mechanism = static_cast<CK_ULONG>(-1);
SECItem ivItem;
ivItem.type = siBuffer;
if (iv.empty())
ivItem.data = nullptr;
else
ivItem.data = iv.data();
ivItem.len = iv.size();
SECItem* pIvItem = nullptr;
switch (type)
{
case CryptoType::AES_128_ECB:
case CryptoType::AES_256_ECB:
mechanism = CKM_AES_ECB;
break;
case CryptoType::AES_128_CBC:
mechanism = CKM_AES_CBC;
pIvItem = &ivItem;
break;
case CryptoType::AES_256_CBC:
mechanism = CKM_AES_CBC;
pIvItem = &ivItem;
break;
default:
break;
}
mSlot = PK11_GetBestSlot(mechanism, nullptr);
if (!mSlot)
throw css::uno::RuntimeException(u"NSS Slot failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
SECItem keyItem;
keyItem.type = siBuffer;
keyItem.data = key.data();
keyItem.len = key.size();
mSymKey = ImportSymKey(mechanism, CKA_ENCRYPT, &keyItem);
if (!mSymKey)
throw css::uno::RuntimeException(u"NSS SymKey failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
mSecParam = PK11_ParamFromIV(mechanism, pIvItem);
mContext = PK11_CreateContextBySymKey(mechanism, operation, mSymKey, mSecParam);
}
void setupCryptoHashContext(std::vector<sal_uInt8>& rKey, CryptoHashType eType)
{
CK_MECHANISM_TYPE aMechanism = static_cast<CK_ULONG>(-1);
switch (eType)
{
case CryptoHashType::SHA1:
aMechanism = CKM_SHA_1_HMAC;
break;
case CryptoHashType::SHA256:
aMechanism = CKM_SHA256_HMAC;
break;
case CryptoHashType::SHA384:
aMechanism = CKM_SHA384_HMAC;
break;
case CryptoHashType::SHA512:
aMechanism = CKM_SHA512_HMAC;
break;
}
mSlot = PK11_GetBestSlot(aMechanism, nullptr);
if (!mSlot)
throw css::uno::RuntimeException(u"NSS Slot failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
SECItem aKeyItem;
aKeyItem.data = rKey.data();
aKeyItem.len = rKey.size();
mSymKey = ImportSymKey(aMechanism, CKA_SIGN, &aKeyItem);
if (!mSymKey)
throw css::uno::RuntimeException(u"NSS SymKey failure"_ustr,
css::uno::Reference<css::uno::XInterface>());
SECItem param;
param.data = nullptr;
param.len = 0;
mContext = PK11_CreateContextBySymKey(aMechanism, CKA_SIGN, mSymKey, ¶m);
}
};
#else
struct CryptoImpl
{
};
#endif
Crypto::Crypto()
: mpImpl(std::make_unique<CryptoImpl>())
{
}
Crypto::~Crypto() {}
// DECRYPT
Decrypt::Decrypt(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, CryptoType type)
{
#if USE_TLS_OPENSSL + USE_TLS_NSS == 0
(void)key;
(void)iv;
(void)type;
#else
mpImpl->setupDecryptContext(key, iv, type);
#endif
}
sal_uInt32 Decrypt::update(std::vector<sal_uInt8>& output, std::vector<sal_uInt8>& input,
sal_uInt32 inputLength)
{
int outputLength = 0;
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
sal_uInt32 actualInputLength
= inputLength == 0 || inputLength > input.size() ? input.size() : inputLength;
#else
(void)output;
(void)input;
(void)inputLength;
#endif
#if USE_TLS_OPENSSL
(void)EVP_DecryptUpdate(mpImpl->mpContext.get(), output.data(), &outputLength, input.data(),
actualInputLength);
#endif // USE_TLS_OPENSSL
#if USE_TLS_NSS
if (!mpImpl->mContext)
return 0;
(void)PK11_CipherOp(mpImpl->mContext, output.data(), &outputLength, actualInputLength,
input.data(), actualInputLength);
#endif // USE_TLS_NSS
return static_cast<sal_uInt32>(outputLength);
}
sal_uInt32 Decrypt::aes128ecb(std::vector<sal_uInt8>& output, std::vector<sal_uInt8>& input,
std::vector<sal_uInt8>& key)
{
sal_uInt32 outputLength = 0;
std::vector<sal_uInt8> iv;
Decrypt crypto(key, iv, CryptoType::AES_128_ECB);
outputLength = crypto.update(output, input);
return outputLength;
}
// ENCRYPT
Encrypt::Encrypt(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, CryptoType type)
{
#if USE_TLS_OPENSSL + USE_TLS_NSS == 0
(void)key;
(void)iv;
(void)type;
#else
mpImpl->setupEncryptContext(key, iv, type);
#endif
}
sal_uInt32 Encrypt::update(std::vector<sal_uInt8>& output, std::vector<sal_uInt8>& input,
sal_uInt32 inputLength)
{
int outputLength = 0;
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
sal_uInt32 actualInputLength
= inputLength == 0 || inputLength > input.size() ? input.size() : inputLength;
#else
(void)output;
(void)input;
(void)inputLength;
#endif
#if USE_TLS_OPENSSL
(void)EVP_EncryptUpdate(mpImpl->mpContext.get(), output.data(), &outputLength, input.data(),
actualInputLength);
#endif // USE_TLS_OPENSSL
#if USE_TLS_NSS
(void)PK11_CipherOp(mpImpl->mContext, output.data(), &outputLength, actualInputLength,
input.data(), actualInputLength);
#endif // USE_TLS_NSS
return static_cast<sal_uInt32>(outputLength);
}
// CryptoHash - HMAC
namespace
{
sal_Int32 getSizeForHashType(CryptoHashType eType)
{
switch (eType)
{
case CryptoHashType::SHA1:
return 20;
case CryptoHashType::SHA256:
return 32;
case CryptoHashType::SHA384:
return 48;
case CryptoHashType::SHA512:
return 64;
}
return 0;
}
} // end anonymous namespace
CryptoHash::CryptoHash(std::vector<sal_uInt8>& rKey, CryptoHashType eType)
: mnHashSize(getSizeForHashType(eType))
{
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
mpImpl->setupCryptoHashContext(rKey, eType);
#if USE_TLS_NSS
PK11_DigestBegin(mpImpl->mContext);
#endif
#else
(void)rKey;
#endif
}
bool CryptoHash::update(std::vector<sal_uInt8>& rInput, sal_uInt32 nInputLength)
{
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
sal_uInt32 nActualInputLength
= (nInputLength == 0 || nInputLength > rInput.size()) ? rInput.size() : nInputLength;
#else
(void)rInput;
(void)nInputLength;
#endif
#if USE_TLS_OPENSSL
SAL_WNODEPRECATED_DECLARATIONS_PUSH // 'HMAC_Update' is deprecated
return HMAC_Update(mpImpl->mpHmacContext.get(), rInput.data(), nActualInputLength)
!= 0;
SAL_WNODEPRECATED_DECLARATIONS_POP
#elif USE_TLS_NSS
return PK11_DigestOp(mpImpl->mContext, rInput.data(), nActualInputLength) == SECSuccess;
#else
return false; // ???
#endif
}
std::vector<sal_uInt8> CryptoHash::finalize()
{
std::vector<sal_uInt8> aHash(mnHashSize, 0);
#if USE_TLS_OPENSSL
unsigned int nSizeWritten = 0;
SAL_WNODEPRECATED_DECLARATIONS_PUSH // 'HMAC_Final' is deprecated
(void) HMAC_Final(mpImpl->mpHmacContext.get(), aHash.data(), &nSizeWritten);
SAL_WNODEPRECATED_DECLARATIONS_POP
#elif USE_TLS_NSS
unsigned int nSizeWritten = 0;
PK11_DigestFinal(mpImpl->mContext, aHash.data(), &nSizeWritten, aHash.size());
#endif
return aHash;
}
} // namespace comphelper
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V1037 Two or more case-branches perform the same actions. Check lines: 324, 328