/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <PolynomialRegressionCurveCalculator.hxx>
#include <RegressionCalculationHelper.hxx>
#include <cmath>
#include <limits>
#include <rtl/math.hxx>
#include <rtl/ustrbuf.hxx>
#include <SpecialCharacters.hxx>
using namespace com::sun::star;
namespace chart
{
static double lcl_GetDotProduct(std::vector<double>& aVec1, std::vector<double>& aVec2)
{
double fResult = 0.0;
assert(aVec1.size() == aVec2.size());
for (size_t i = 0; i < aVec1.size(); ++i)
fResult += aVec1[i] * aVec2[i];
return fResult;
}
PolynomialRegressionCurveCalculator::PolynomialRegressionCurveCalculator()
{}
PolynomialRegressionCurveCalculator::~PolynomialRegressionCurveCalculator()
{}
void PolynomialRegressionCurveCalculator::computeCorrelationCoefficient(
RegressionCalculationHelper::tDoubleVectorPair& rValues,
const sal_Int32 aNoValues,
double yAverage )
{
double aSumError = 0.0;
double aSumTotal = 0.0;
double aSumYpred2 = 0.0;
for( sal_Int32 i = 0; i < aNoValues; i++ )
{
double xValue = rValues.first[i];
double yActual = rValues.second[i];
double yPredicted = getCurveValue( xValue );
aSumTotal += (yActual - yAverage) * (yActual - yAverage);
aSumError += (yActual - yPredicted) * (yActual - yPredicted);
if(mForceIntercept)
aSumYpred2 += (yPredicted - mInterceptValue) * (yPredicted - mInterceptValue);
}
double aRSquared = 0.0;
if(mForceIntercept)
{
if (auto const div = aSumError + aSumYpred2)
{
aRSquared = aSumYpred2 / div;
}
}
else if (aSumTotal != 0.0)
{
aRSquared = 1.0 - (aSumError / aSumTotal);
}
if (aRSquared > 0.0)
m_fCorrelationCoefficient = std::sqrt(aRSquared);
else
m_fCorrelationCoefficient = 0.0;
}
// ____ XRegressionCurveCalculator ____
void SAL_CALL PolynomialRegressionCurveCalculator::recalculateRegression(
const uno::Sequence< double >& aXValues,
const uno::Sequence< double >& aYValues )
{
m_fCorrelationCoefficient = std::numeric_limits<double>::quiet_NaN();
RegressionCalculationHelper::tDoubleVectorPair aValues(
RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValid()));
const sal_Int32 aNoValues = aValues.first.size();
const sal_Int32 aNoPowers = mForceIntercept ? mDegree : mDegree + 1;
mCoefficients.clear();
mCoefficients.resize(aNoPowers, 0.0);
double yAverage = 0.0;
std::vector<double> yVector;
yVector.resize(aNoValues, 0.0);
for(sal_Int32 i = 0; i < aNoValues; i++)
{
double yValue = aValues.second[i];
if (mForceIntercept)
yValue -= mInterceptValue;
yVector[i] = yValue;
yAverage += yValue;
}
if (aNoValues != 0)
{
yAverage /= aNoValues;
}
// Special case for single variable regression like in LINEST
// implementation in Calc.
if (mDegree == 1)
{
std::vector<double> xVector;
xVector.resize(aNoValues, 0.0);
double xAverage = 0.0;
for(sal_Int32 i = 0; i < aNoValues; ++i)
{
double xValue = aValues.first[i];
xVector[i] = xValue;
xAverage += xValue;
}
if (aNoValues != 0)
{
xAverage /= aNoValues;
}
if (!mForceIntercept)
{
for (sal_Int32 i = 0; i < aNoValues; ++i)
{
xVector[i] -= xAverage;
yVector[i] -= yAverage;
}
}
double fSumXY = lcl_GetDotProduct(xVector, yVector);
double fSumX2 = lcl_GetDotProduct(xVector, xVector);
double fSlope = fSumXY / fSumX2;
if (!mForceIntercept)
{
mInterceptValue = ::rtl::math::approxSub(yAverage, fSlope * xAverage);
mCoefficients[0] = mInterceptValue;
mCoefficients[1] = fSlope;
}
else
{
mCoefficients[0] = fSlope;
mCoefficients.insert(mCoefficients.begin(), mInterceptValue);
}
computeCorrelationCoefficient(aValues, aNoValues, yAverage);
return;
}
std::vector<double> aQRTransposed;
aQRTransposed.resize(aNoValues * aNoPowers, 0.0);
for(sal_Int32 j = 0; j < aNoPowers; j++)
{
sal_Int32 aPower = mForceIntercept ? j+1 : j;
sal_Int32 aColumnIndex = j * aNoValues;
for(sal_Int32 i = 0; i < aNoValues; i++)
{
double xValue = aValues.first[i];
aQRTransposed[i + aColumnIndex] = std::pow(xValue, static_cast<int>(aPower));
}
}
// QR decomposition - based on org.apache.commons.math.linear.QRDecomposition from apache commons math (ASF)
sal_Int32 aMinorSize = std::min(aNoValues, aNoPowers);
std::vector<double> aDiagonal;
aDiagonal.resize(aMinorSize, 0.0);
// Calculate Householder reflectors
for (sal_Int32 aMinor = 0; aMinor < aMinorSize; aMinor++)
{
double aNormSqr = 0.0;
for (sal_Int32 x = aMinor; x < aNoValues; x++)
{
double c = aQRTransposed[x + aMinor * aNoValues];
aNormSqr += c * c;
}
double a;
if (aQRTransposed[aMinor + aMinor * aNoValues] > 0.0)
a = -std::sqrt(aNormSqr);
else
a = std::sqrt(aNormSqr);
aDiagonal[aMinor] = a;
if (a != 0.0)
{
aQRTransposed[aMinor + aMinor * aNoValues] -= a;
for (sal_Int32 aColumn = aMinor + 1; aColumn < aNoPowers; aColumn++)
{
double alpha = 0.0;
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
alpha -= aQRTransposed[aRow + aColumn * aNoValues] * aQRTransposed[aRow + aMinor * aNoValues];
}
alpha /= a * aQRTransposed[aMinor + aMinor * aNoValues];
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
aQRTransposed[aRow + aColumn * aNoValues] -= alpha * aQRTransposed[aRow + aMinor * aNoValues];
}
}
}
}
// Solve the linear equation
for (sal_Int32 aMinor = 0; aMinor < aMinorSize; aMinor++)
{
double aDotProduct = 0;
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
aDotProduct += yVector[aRow] * aQRTransposed[aRow + aMinor * aNoValues];
}
aDotProduct /= aDiagonal[aMinor] * aQRTransposed[aMinor + aMinor * aNoValues];
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
yVector[aRow] += aDotProduct * aQRTransposed[aRow + aMinor * aNoValues];
}
}
for (sal_Int32 aRow = aDiagonal.size() - 1; aRow >= 0; aRow--)
{
yVector[aRow] /= aDiagonal[aRow];
double yRow = yVector[aRow];
mCoefficients[aRow] = yRow;
for (sal_Int32 i = 0; i < aRow; i++)
{
yVector[i] -= yRow * aQRTransposed[i + aRow * aNoValues];
}
}
if(mForceIntercept)
{
mCoefficients.insert(mCoefficients.begin(), mInterceptValue);
}
// Calculate correlation coefficient
computeCorrelationCoefficient(aValues, aNoValues, yAverage);
}
double SAL_CALL PolynomialRegressionCurveCalculator::getCurveValue( double x )
{
if (mCoefficients.empty())
return std::numeric_limits<double>::quiet_NaN();
sal_Int32 aNoCoefficients = static_cast<sal_Int32>(mCoefficients.size());
// Horner's method
double fResult = 0.0;
for (sal_Int32 i = aNoCoefficients - 1; i >= 0; i--)
{
fResult = mCoefficients[i] + (x * fResult);
}
return fResult;
}
OUString PolynomialRegressionCurveCalculator::ImplGetRepresentation(
const uno::Reference< util::XNumberFormatter >& xNumFormatter,
sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const
{
OUStringBuffer aBuf( mYName + " = " );
sal_Int32 nValueLength=0;
sal_Int32 aLastIndex = mCoefficients.size() - 1;
if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 )
{
sal_Int32 nCharMin = aBuf.getLength(); // count characters different from coefficients
double nCoefficients = aLastIndex + 1.0; // number of coefficients
for (sal_Int32 i = aLastIndex; i >= 0; i--)
{
double aValue = mCoefficients[i];
if ( aValue == 0.0 )
{ // do not count coefficient if it is 0
nCoefficients --;
continue;
}
if ( rtl::math::approxEqual( fabs( aValue ) , 1.0 ) )
{ // do not count coefficient if it is 1
nCoefficients --;
if ( i == 0 ) // intercept = 1
nCharMin ++;
}
if ( i != aLastIndex )
nCharMin += 3; // " + "
if ( i > 0 )
{
nCharMin += mXName.getLength() + 1; // " x"
if ( i > 1 )
nCharMin +=1; // "^i"
if ( i >= 10 )
nCharMin ++; // 2 digits for i
}
}
nValueLength = ( *pFormulaMaxWidth - nCharMin ) / nCoefficients;
if ( nValueLength <= 0 )
nValueLength = 1;
}
bool bFindValue = false;
sal_Int32 nLineLength = aBuf.getLength();
for (sal_Int32 i = aLastIndex; i >= 0; i--)
{
double aValue = mCoefficients[i];
OUStringBuffer aTmpBuf(""); // temporary buffer
if (aValue == 0.0)
{
continue;
}
else if (aValue < 0.0)
{
if ( bFindValue ) // if it is not the first aValue
aTmpBuf.append( " " );
aTmpBuf.append( OUStringChar(aMinusSign) + " ");
aValue = - aValue;
}
else
{
if ( bFindValue ) // if it is not the first aValue
aTmpBuf.append( " + " );
}
bFindValue = true;
// if nValueLength not calculated then nullptr
sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr;
OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, aValue, pValueLength );
if ( i == 0 || aValueString != "1" ) // aValueString may be rounded to 1 if nValueLength is small
{
aTmpBuf.append( aValueString );
if ( i > 0 ) // insert blank between coefficient and x
aTmpBuf.append( " " );
}
if(i > 0)
{
aTmpBuf.append( mXName );
if (i > 1)
{
if (i < 10) // simple case if only one digit
aTmpBuf.append( aSuperscriptFigures[ i ] );
else
{
OUString aValueOfi = OUString::number( i );
for ( sal_Int32 n = 0; n < aValueOfi.getLength() ; n++ )
{
sal_Int32 nIndex = aValueOfi[n] - u'0';
aTmpBuf.append( aSuperscriptFigures[ nIndex ] );
}
}
}
}
addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth );
}
if ( std::u16string_view(aBuf) == Concat2View( mYName + " = ") )
aBuf.append( "0" );
return aBuf.makeStringAndClear();
}
} // namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.