/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <PotentialRegressionCurveCalculator.hxx>
#include <RegressionCalculationHelper.hxx>
#include <SpecialCharacters.hxx>
#include <limits>
#include <rtl/math.hxx>
#include <rtl/ustrbuf.hxx>
using namespace ::com::sun::star;
namespace chart
{
PotentialRegressionCurveCalculator::PotentialRegressionCurveCalculator()
: m_fSlope(std::numeric_limits<double>::quiet_NaN())
, m_fIntercept(std::numeric_limits<double>::quiet_NaN())
, m_fSign(1.0)
{
}
PotentialRegressionCurveCalculator::~PotentialRegressionCurveCalculator()
{}
// ____ XRegressionCurveCalculator ____
void SAL_CALL PotentialRegressionCurveCalculator::recalculateRegression(
const uno::Sequence< double >& aXValues,
const uno::Sequence< double >& aYValues )
{
RegressionCalculationHelper::tDoubleVectorPair aValues(
RegressionCalculationHelper::cleanup(
aXValues, aYValues,
RegressionCalculationHelper::isValidAndBothPositive()));
m_fSign = 1.0;
size_t nMax = aValues.first.size();
if( nMax <= 1 ) // at least 2 points
{
aValues = RegressionCalculationHelper::cleanup(
aXValues, aYValues,
RegressionCalculationHelper::isValidAndXPositiveAndYNegative());
nMax = aValues.first.size();
if( nMax <= 1 )
{
m_fSlope = std::numeric_limits<double>::quiet_NaN();
m_fIntercept = std::numeric_limits<double>::quiet_NaN();
m_fCorrelationCoefficient = std::numeric_limits<double>::quiet_NaN();
return;
}
m_fSign = -1.0;
}
double fAverageX = 0.0, fAverageY = 0.0;
size_t i = 0;
for( i = 0; i < nMax; ++i )
{
fAverageX += log( aValues.first[i] );
fAverageY += log( m_fSign * aValues.second[i] );
}
const double fN = static_cast< double >( nMax );
fAverageX /= fN;
fAverageY /= fN;
double fQx = 0.0, fQy = 0.0, fQxy = 0.0;
for( i = 0; i < nMax; ++i )
{
double fDeltaX = log( aValues.first[i] ) - fAverageX;
double fDeltaY = log( m_fSign * aValues.second[i] ) - fAverageY;
fQx += fDeltaX * fDeltaX;
fQy += fDeltaY * fDeltaY;
fQxy += fDeltaX * fDeltaY;
}
m_fSlope = fQxy / fQx;
m_fIntercept = fAverageY - m_fSlope * fAverageX;
m_fCorrelationCoefficient = fQxy / sqrt( fQx * fQy );
m_fIntercept = m_fSign * exp( m_fIntercept );
}
double SAL_CALL PotentialRegressionCurveCalculator::getCurveValue( double x )
{
if( ! ( std::isnan( m_fSlope ) ||
std::isnan( m_fIntercept )))
{
return m_fIntercept * pow( x, m_fSlope );
}
return std::numeric_limits<double>::quiet_NaN();
}
uno::Sequence< geometry::RealPoint2D > SAL_CALL PotentialRegressionCurveCalculator::getCurveValues(
double min, double max, ::sal_Int32 nPointCount,
const uno::Reference< chart2::XScaling >& xScalingX,
const uno::Reference< chart2::XScaling >& xScalingY,
sal_Bool bMaySkipPointsInCalculation )
{
if( bMaySkipPointsInCalculation &&
isLogarithmicScaling( xScalingX ) &&
isLogarithmicScaling( xScalingY ))
{
// optimize result
uno::Sequence< geometry::RealPoint2D > aResult{ { min, getCurveValue( min ) },
{ max, getCurveValue( max ) } };
return aResult;
}
return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
}
OUString PotentialRegressionCurveCalculator::ImplGetRepresentation(
const uno::Reference< util::XNumberFormatter >& xNumFormatter,
sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const
{
bool bHasIntercept = !rtl::math::approxEqual( fabs(m_fIntercept), 1.0 );
OUStringBuffer aBuf( mYName + " = " );
sal_Int32 nLineLength = aBuf.getLength();
sal_Int32 nValueLength=0;
if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 ) // count nValueLength
{
sal_Int32 nCharMin = nLineLength + mXName.getLength() + 3; // 3 = "^" + 2 extra characters
if ( m_fIntercept != 0.0 && m_fSlope != 0.0 )
{
if ( m_fIntercept < 0.0 )
nCharMin += 2; // "- "
if ( bHasIntercept )
nValueLength = (*pFormulaMaxWidth - nCharMin) / 2;
}
if ( nValueLength == 0 ) // not yet calculated
nValueLength = *pFormulaMaxWidth - nCharMin;
if ( nValueLength <= 0 )
nValueLength = 1;
}
if( m_fIntercept == 0.0 )
{
aBuf.append( '0' );
}
else
{
// temporary buffer
OUStringBuffer aTmpBuf("");
// if nValueLength not calculated then nullptr
sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr;
if ( m_fIntercept < 0.0 ) // add intercept value
aTmpBuf.append( OUStringChar(aMinusSign) + " " );
if( bHasIntercept )
{
OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fIntercept), pValueLength );
if ( aValueString != "1" ) // aValueString may be rounded to 1 if nValueLength is small
{
aTmpBuf.append( aValueString + " " );
}
}
if( m_fSlope != 0.0 ) // add slope value
{
aTmpBuf.append( mXName + "^" +
getFormattedString( xNumFormatter, nNumberFormatKey, m_fSlope, pValueLength ));
}
addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth );
}
return aBuf.makeStringAndClear();
}
} // namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'append' is required to be utilized.