/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <memory>
#include "BookmarkSet.hxx"
#include "KeySet.hxx"
#include "OptimisticSet.hxx"
#include "RowSetBase.hxx"
#include "RowSetCache.hxx"
#include "StaticSet.hxx"
#include "WrappedResultSet.hxx"
#include <core_resource.hxx>
#include <strings.hrc>
#include <strings.hxx>
#include <com/sun/star/sdbc/ColumnValue.hpp>
#include <com/sun/star/sdbc/ResultSetConcurrency.hpp>
#include <com/sun/star/sdbc/ResultSetType.hpp>
#include <com/sun/star/sdbcx/CompareBookmark.hpp>
#include <com/sun/star/sdbcx/Privilege.hpp>
#include <com/sun/star/sdbcx/XColumnsSupplier.hpp>
#include <com/sun/star/sdbcx/XTablesSupplier.hpp>
#include <comphelper/extract.hxx>
#include <comphelper/types.hxx>
#include <connectivity/dbexception.hxx>
#include <connectivity/dbtools.hxx>
#include <connectivity/sqliterator.hxx>
#include <connectivity/sqlnode.hxx>
#include <connectivity/sqlparse.hxx>
#include <sqlbison.hxx>
#include <comphelper/diagnose_ex.hxx>
#include <o3tl/safeint.hxx>
#include <osl/diagnose.h>
#include <algorithm>
using namespace dbaccess;
using namespace dbtools;
using namespace connectivity;
using namespace ::com::sun::star::uno;
using namespace ::com::sun::star::beans;
using namespace ::com::sun::star::sdbc;
using namespace ::com::sun::star::sdb;
using namespace ::com::sun::star::sdbcx;
using namespace ::com::sun::star::container;
using namespace ::cppu;
// This class calls m_pCacheSet->FOO_checked(..., sal_False)
// (where FOO is absolute, last, previous)
// when it does not immediately care about the values in the row's columns.
// As a corollary, m_pCacheSet may be left in an inconsistent state,
// and all ->fillFOO calls (and ->getFOO) may fail or give wrong results,
// until m_pCacheSet is moved (or refreshed) again.
// So always make sure m_pCacheSet is moved or refreshed before accessing column values.
ORowSetCache::ORowSetCache(const Reference< XResultSet >& _xRs,
const Reference< XSingleSelectQueryAnalyzer >& _xAnalyzer,
const Reference<XComponentContext>& _rContext,
const OUString& _rUpdateTableName,
bool& _bModified,
bool& _bNew,
const ORowSetValueVector& _aParameterValueForCache,
const OUString& i_sRowSetFilter,
sal_Int32 i_nMaxRows)
:m_xSet(_xRs)
,m_xMetaData(Reference< XResultSetMetaDataSupplier >(_xRs,UNO_QUERY_THROW)->getMetaData())
,m_aContext( _rContext )
,m_nFetchSize(0)
,m_nRowCount(0)
,m_nPrivileges( Privilege::SELECT )
,m_nPosition(0)
,m_nStartPos(0)
,m_nEndPos(0)
,m_bRowCountFinal(false)
,m_bBeforeFirst(true)
,m_bAfterLast( false )
,m_bModified(_bModified)
,m_bNew(_bNew)
{
// first try if the result can be used to do inserts and updates
Reference< XPropertySet> xProp(_xRs,UNO_QUERY);
Reference< XPropertySetInfo > xPropInfo = xProp->getPropertySetInfo();
bool bBookmarkable = false;
try
{
Reference< XResultSetUpdate> xUp(_xRs,UNO_QUERY_THROW);
bBookmarkable = xPropInfo->hasPropertyByName(PROPERTY_ISBOOKMARKABLE) &&
any2bool(xProp->getPropertyValue(PROPERTY_ISBOOKMARKABLE)) && Reference< XRowLocate >(_xRs, UNO_QUERY).is();
if ( bBookmarkable )
{
xUp->moveToInsertRow();
xUp->cancelRowUpdates();
_xRs->beforeFirst();
m_nPrivileges = Privilege::SELECT|Privilege::DELETE|Privilege::INSERT|Privilege::UPDATE;
m_xCacheSet = new WrappedResultSet(i_nMaxRows);
m_xCacheSet->construct(_xRs,i_sRowSetFilter);
return;
}
}
catch(const Exception&)
{
DBG_UNHANDLED_EXCEPTION("dbaccess.core");
}
try
{
if ( xPropInfo->hasPropertyByName(PROPERTY_RESULTSETTYPE) &&
::comphelper::getINT32(xProp->getPropertyValue(PROPERTY_RESULTSETTYPE)) != ResultSetType::FORWARD_ONLY)
_xRs->beforeFirst();
}
catch(const SQLException&)
{
TOOLS_WARN_EXCEPTION("dbaccess.core", "ORowSetCache");
}
// check if all keys of the updateable table are fetched
bool bAllKeysFound = false;
sal_Int32 nTablesCount = 0;
bool bNeedKeySet = !bBookmarkable || (xPropInfo->hasPropertyByName(PROPERTY_RESULTSETCONCURRENCY) &&
::comphelper::getINT32(xProp->getPropertyValue(PROPERTY_RESULTSETCONCURRENCY)) == ResultSetConcurrency::READ_ONLY);
OUString aUpdateTableName = _rUpdateTableName;
Reference< XConnection> xConnection;
// first we need a connection
Reference< XStatement> xStmt(_xRs->getStatement(),UNO_QUERY);
if(xStmt.is())
xConnection = xStmt->getConnection();
else
{
Reference< XPreparedStatement> xPrepStmt(_xRs->getStatement(),UNO_QUERY);
xConnection = xPrepStmt->getConnection();
}
OSL_ENSURE(xConnection.is(),"No connection!");
if(_xAnalyzer.is())
{
try
{
Reference<XTablesSupplier> xTabSup(_xAnalyzer,UNO_QUERY);
OSL_ENSURE(xTabSup.is(),"ORowSet::execute composer isn't a tablesupplier!");
Reference<XNameAccess> xTables = xTabSup->getTables();
Sequence< OUString> aTableNames = xTables->getElementNames();
if ( aTableNames.getLength() > 1 && _rUpdateTableName.isEmpty() && bNeedKeySet )
{// here we have a join or union and nobody told us which table to update, so we update them all
m_nPrivileges = Privilege::SELECT|Privilege::DELETE|Privilege::INSERT|Privilege::UPDATE;
rtl::Reference<OptimisticSet> pCursor = new OptimisticSet(m_aContext,xConnection,_xAnalyzer,_aParameterValueForCache,i_nMaxRows,m_nRowCount);
m_xCacheSet = pCursor;
try
{
m_xCacheSet->construct(_xRs,i_sRowSetFilter);
if ( pCursor->isReadOnly() )
m_nPrivileges = Privilege::SELECT;
m_aKeyColumns = pCursor->getJoinedKeyColumns();
return;
}
catch (const Exception&)
{
TOOLS_WARN_EXCEPTION("dbaccess.core", "ORowSetCache");
}
m_xCacheSet.clear();
}
else
{
if(!_rUpdateTableName.isEmpty() && xTables->hasByName(_rUpdateTableName))
xTables->getByName(_rUpdateTableName) >>= m_aUpdateTable;
else if(xTables->getElementNames().hasElements())
{
aUpdateTableName = xTables->getElementNames()[0];
xTables->getByName(aUpdateTableName) >>= m_aUpdateTable;
}
Reference<XIndexAccess> xIndexAccess(xTables,UNO_QUERY);
if(xIndexAccess.is())
nTablesCount = xIndexAccess->getCount();
else
nTablesCount = xTables->getElementNames().getLength();
if(m_aUpdateTable.is() && nTablesCount < 3) // for we can't handle more than 2 tables in our keyset
{
Reference<XPropertySet> xSet(m_aUpdateTable,UNO_QUERY);
const Reference<XNameAccess> xPrimaryKeyColumns = dbtools::getPrimaryKeyColumns_throw(xSet);
if ( xPrimaryKeyColumns.is() )
{
Reference<XColumnsSupplier> xColSup(_xAnalyzer,UNO_QUERY);
if ( xColSup.is() )
{
Reference<XNameAccess> xSelColumns = xColSup->getColumns();
Reference<XDatabaseMetaData> xMeta = xConnection->getMetaData();
SelectColumnsMetaData aColumnNames(comphelper::UStringMixLess(xMeta.is() && xMeta->supportsMixedCaseQuotedIdentifiers()));
::dbaccess::getColumnPositions(xSelColumns,xPrimaryKeyColumns->getElementNames(),aUpdateTableName,aColumnNames);
bAllKeysFound = !aColumnNames.empty() && aColumnNames.size() == o3tl::make_unsigned(xPrimaryKeyColumns->getElementNames().getLength());
}
}
}
}
}
catch (Exception const&)
{
TOOLS_WARN_EXCEPTION("dbaccess.core", "ORowSetCache");
}
}
// first check if resultset is bookmarkable
if(!bNeedKeySet)
{
try
{
m_xCacheSet = new OBookmarkSet(i_nMaxRows);
m_xCacheSet->construct(_xRs,i_sRowSetFilter);
// check privileges
m_nPrivileges = Privilege::SELECT;
if(Reference<XResultSetUpdate>(_xRs,UNO_QUERY).is()) // this interface is optional so we have to check it
{
Reference<XPropertySet> xTable(m_aUpdateTable,UNO_QUERY);
if(xTable.is() && xTable->getPropertySetInfo()->hasPropertyByName(PROPERTY_PRIVILEGES))
{
m_nPrivileges = 0;
xTable->getPropertyValue(PROPERTY_PRIVILEGES) >>= m_nPrivileges;
if(!m_nPrivileges)
m_nPrivileges = Privilege::SELECT;
}
}
}
catch (const SQLException&)
{
TOOLS_WARN_EXCEPTION("dbaccess.core", "ORowSetCache");
bNeedKeySet = true;
}
}
if(bNeedKeySet)
{
// need to check if we could handle this select clause
bAllKeysFound = bAllKeysFound && (nTablesCount == 1 || checkJoin(xConnection,_xAnalyzer,aUpdateTableName));
if(!bAllKeysFound )
{
if ( bBookmarkable )
{
// here I know that we have a read only bookmarkable cursor
_xRs->beforeFirst();
m_nPrivileges = Privilege::SELECT;
m_xCacheSet = new WrappedResultSet(i_nMaxRows);
m_xCacheSet->construct(_xRs,i_sRowSetFilter);
return;
}
m_xCacheSet = new OStaticSet(i_nMaxRows);
m_xCacheSet->construct(_xRs,i_sRowSetFilter);
m_nPrivileges = Privilege::SELECT;
}
else
{
Reference<XDatabaseMetaData> xMeta = xConnection->getMetaData();
SelectColumnsMetaData aColumnNames(comphelper::UStringMixLess(xMeta.is() && xMeta->supportsMixedCaseQuotedIdentifiers()));
Reference<XColumnsSupplier> xColSup(_xAnalyzer,UNO_QUERY);
Reference<XNameAccess> xSelColumns = xColSup->getColumns();
Reference<XNameAccess> xColumns = m_aUpdateTable->getColumns();
::dbaccess::getColumnPositions(xSelColumns,xColumns->getElementNames(),aUpdateTableName,aColumnNames);
// check privileges
m_nPrivileges = Privilege::SELECT;
bool bNoInsert = false;
for (auto& columnName : xColumns->getElementNames())
{
Reference<XPropertySet> xColumn(xColumns->getByName(columnName), UNO_QUERY);
OSL_ENSURE(xColumn.is(),"Column in table is null!");
if(xColumn.is())
{
sal_Int32 nNullable = 0;
xColumn->getPropertyValue(PROPERTY_ISNULLABLE) >>= nNullable;
if(nNullable == ColumnValue::NO_NULLS && aColumnNames.find(columnName) == aColumnNames.end())
{ // we found a column where null is not allowed so we can't insert new values
bNoInsert = true;
break; // one column is enough
}
}
}
rtl::Reference<OKeySet> pKeySet = new OKeySet(m_aUpdateTable, aUpdateTableName ,_xAnalyzer,_aParameterValueForCache,i_nMaxRows,m_nRowCount);
try
{
m_xCacheSet = pKeySet;
pKeySet->construct(_xRs,i_sRowSetFilter);
if(Reference<XResultSetUpdate>(_xRs,UNO_QUERY).is()) // this interface is optional so we have to check it
{
Reference<XPropertySet> xTable(m_aUpdateTable,UNO_QUERY);
if(xTable.is() && xTable->getPropertySetInfo()->hasPropertyByName(PROPERTY_PRIVILEGES))
{
m_nPrivileges = 0;
xTable->getPropertyValue(PROPERTY_PRIVILEGES) >>= m_nPrivileges;
if(!m_nPrivileges)
m_nPrivileges = Privilege::SELECT;
}
}
if(bNoInsert)
m_nPrivileges |= ~Privilege::INSERT; // remove the insert privilege
}
catch (const SQLException&)
{
TOOLS_WARN_EXCEPTION("dbaccess.core", "ORowSetCache");
// we couldn't create a keyset here so we have to create a static cache
m_xCacheSet = new OStaticSet(i_nMaxRows);
m_xCacheSet->construct(_xRs,i_sRowSetFilter);
m_nPrivileges = Privilege::SELECT;
}
}
}
// last check
if(!bAllKeysFound && xProp->getPropertySetInfo()->hasPropertyByName(PROPERTY_RESULTSETCONCURRENCY) &&
::comphelper::getINT32(xProp->getPropertyValue(PROPERTY_RESULTSETCONCURRENCY)) == ResultSetConcurrency::READ_ONLY)
m_nPrivileges = Privilege::SELECT;
}
ORowSetCache::~ORowSetCache()
{
m_xCacheSet.clear();
if(m_pMatrix)
{
m_pMatrix->clear();
m_pMatrix.reset();
}
if(m_pInsertMatrix)
{
m_pInsertMatrix->clear();
m_pInsertMatrix.reset();
}
m_xSet = WeakReference< XResultSet>();
m_xMetaData = nullptr;
m_aUpdateTable = nullptr;
}
void ORowSetCache::setFetchSize(sal_Int32 _nSize)
{
if(_nSize == m_nFetchSize)
return;
m_nFetchSize = _nSize;
if(!m_pMatrix)
{
m_pMatrix.reset( new ORowSetMatrix(_nSize) );
m_aMatrixIter = m_pMatrix->end();
m_aMatrixEnd = m_pMatrix->end();
m_pInsertMatrix.reset( new ORowSetMatrix(1) ); // a little bit overkill but ??? :-)
m_aInsertRow = m_pInsertMatrix->end();
}
else
{
// now correct the iterator in our iterator vector
std::vector<sal_Int32> aPositions;
std::map<sal_Int32,bool> aCacheIterToChange;
// first get the positions where they stand now
for(const auto& [rIndex, rHelper] : m_aCacheIterators)
{
aCacheIterToChange[rIndex] = false;
if ( !rHelper.pRowSet->isInsertRow()
/*&& rHelper.aIterator != m_pMatrix->end()*/ && !m_bModified )
{
ptrdiff_t nDist = rHelper.aIterator - m_pMatrix->begin();
aPositions.push_back(nDist);
aCacheIterToChange[rIndex] = true;
}
}
sal_Int32 nKeyPos = m_aMatrixIter - m_pMatrix->begin();
m_pMatrix->resize(_nSize);
if ( nKeyPos < _nSize )
m_aMatrixIter = m_pMatrix->begin() + nKeyPos;
else
m_aMatrixIter = m_pMatrix->end();
m_aMatrixEnd = m_pMatrix->end();
// now adjust their positions because a resize invalidates all iterators
std::vector<sal_Int32>::const_iterator aIter = aPositions.begin();
ORowSetCacheMap::iterator aCacheIter = m_aCacheIterators.begin();
for(const auto& rPosChange : aCacheIterToChange)
{
if ( rPosChange.second )
{
OSL_ENSURE((*aIter >= static_cast<ORowSetMatrix::difference_type>(0)) && (*aIter < static_cast<sal_Int32>(m_pMatrix->size())),"Position is invalid!");
if ( *aIter < _nSize )
aCacheIter->second.aIterator = m_pMatrix->begin() + *aIter++;
else
aCacheIter->second.aIterator = m_pMatrix->end();
}
++aCacheIter;
}
}
if(!m_nPosition)
{
sal_Int32 nNewSt = 0;
fillMatrix(nNewSt,_nSize);
OSL_ENSURE(nNewSt == 0, "fillMatrix set new start to unexpected value");
m_nStartPos = 0;
m_nEndPos = _nSize;
}
else if (m_nStartPos < m_nPosition && m_nPosition <= m_nEndPos)
{
sal_Int32 nNewSt = -1;
_nSize += m_nStartPos;
fillMatrix(nNewSt, _nSize);
if (nNewSt >= 0)
{
m_nStartPos = nNewSt;
m_nEndPos = _nSize;
m_aMatrixIter = calcPosition();
}
else
{
m_nEndPos = m_nStartPos + m_nFetchSize;
}
}
else
{
OSL_FAIL("m_nPosition not between m_nStartPos and m_nEndpos");
// try to repair
moveWindow();
m_aMatrixIter = calcPosition();
}
}
// XResultSetMetaDataSupplier
static Any lcl_getBookmark(ORowSetValue& i_aValue,OCacheSet* i_pCacheSet)
{
switch ( i_aValue.getTypeKind() )
{
case DataType::TINYINT:
case DataType::SMALLINT:
case DataType::INTEGER:
return Any(i_aValue.getInt32());
default:
if ( i_pCacheSet && i_aValue.isNull())
i_aValue = i_pCacheSet->getBookmark();
return i_aValue.getAny();
}
}
// css::sdbcx::XRowLocate
Any ORowSetCache::getBookmark( )
{
if(m_bAfterLast)
throwFunctionSequenceException(m_xSet.get());
if ( m_aMatrixIter >= m_pMatrix->end() || m_aMatrixIter < m_pMatrix->begin() || !(*m_aMatrixIter).is())
{
return Any(); // this is allowed here because the rowset knows what it is doing
}
return lcl_getBookmark((**m_aMatrixIter)[0],m_xCacheSet.get());
}
bool ORowSetCache::moveToBookmark( const Any& bookmark )
{
if ( m_xCacheSet->moveToBookmark(bookmark) )
{
m_bBeforeFirst = false;
m_nPosition = m_xCacheSet->getRow();
checkPositionFlags();
if(!m_bAfterLast)
{
moveWindow();
checkPositionFlags();
if ( !m_bAfterLast )
{
m_aMatrixIter = calcPosition();
OSL_ENSURE(m_aMatrixIter->is(),"Iterator after moveToBookmark not valid");
}
else
m_aMatrixIter = m_pMatrix->end();
}
else
m_aMatrixIter = m_pMatrix->end();
}
else
return false;
return m_aMatrixIter != m_pMatrix->end() && (*m_aMatrixIter).is();
}
bool ORowSetCache::moveRelativeToBookmark( const Any& bookmark, sal_Int32 rows )
{
bool bRet( moveToBookmark( bookmark ) );
if ( bRet )
{
m_nPosition = m_xCacheSet->getRow() + rows;
absolute(m_nPosition);
bRet = m_aMatrixIter != m_pMatrix->end() && (*m_aMatrixIter).is();
}
return bRet;
}
sal_Int32 ORowSetCache::compareBookmarks( const Any& _first, const Any& _second )
{
return (!_first.hasValue() || !_second.hasValue()) ? CompareBookmark::NOT_COMPARABLE : m_xCacheSet->compareBookmarks(_first,_second);
}
bool ORowSetCache::hasOrderedBookmarks( )
{
return m_xCacheSet->hasOrderedBookmarks();
}
sal_Int32 ORowSetCache::hashBookmark( const Any& bookmark )
{
return m_xCacheSet->hashBookmark(bookmark);
}
// XRowUpdate
void ORowSetCache::updateNull(sal_Int32 columnIndex,ORowSetValueVector::Vector& io_aRow
,std::vector<sal_Int32>& o_ChangedColumns
)
{
checkUpdateConditions(columnIndex);
ORowSetValueVector::Vector& rInsert = **m_aInsertRow;
if ( !rInsert[columnIndex].isNull() )
{
rInsert[columnIndex].setBound(true);
rInsert[columnIndex].setNull();
rInsert[columnIndex].setModified(true);
io_aRow[columnIndex].setNull();
m_xCacheSet->mergeColumnValues(columnIndex,rInsert,io_aRow,o_ChangedColumns);
impl_updateRowFromCache_throw(io_aRow,o_ChangedColumns);
}
}
void ORowSetCache::updateValue(sal_Int32 columnIndex,const ORowSetValue& x
,ORowSetValueVector::Vector& io_aRow
,std::vector<sal_Int32>& o_ChangedColumns
)
{
checkUpdateConditions(columnIndex);
ORowSetValueVector::Vector& rInsert = **m_aInsertRow;
if ( rInsert[columnIndex] != x )
{
rInsert[columnIndex].setBound(true);
rInsert[columnIndex] = x;
rInsert[columnIndex].setModified(true);
io_aRow[columnIndex] = rInsert[columnIndex];
m_xCacheSet->mergeColumnValues(columnIndex,rInsert,io_aRow,o_ChangedColumns);
impl_updateRowFromCache_throw(io_aRow,o_ChangedColumns);
}
}
void ORowSetCache::updateCharacterStream( sal_Int32 columnIndex, const Reference< css::io::XInputStream >& x
, sal_Int32 length,ORowSetValueVector::Vector& io_aRow
,std::vector<sal_Int32>& o_ChangedColumns
)
{
checkUpdateConditions(columnIndex);
Sequence<sal_Int8> aSeq;
if(x.is())
x->readBytes(aSeq,length);
ORowSetValueVector::Vector& rInsert = **m_aInsertRow;
rInsert[columnIndex].setBound(true);
rInsert[columnIndex] = aSeq;
rInsert[columnIndex].setModified(true);
io_aRow[columnIndex] = Any(x);
m_xCacheSet->mergeColumnValues(columnIndex,rInsert,io_aRow,o_ChangedColumns);
impl_updateRowFromCache_throw(io_aRow,o_ChangedColumns);
}
void ORowSetCache::updateObject( sal_Int32 columnIndex, const Any& x
,ORowSetValueVector::Vector& io_aRow
,std::vector<sal_Int32>& o_ChangedColumns
)
{
checkUpdateConditions(columnIndex);
ORowSetValueVector::Vector& rInsert = **m_aInsertRow;
ORowSetValue aTemp;
aTemp.fill(x);
if ( rInsert[columnIndex] != aTemp )
{
rInsert[columnIndex].setBound(true);
rInsert[columnIndex] = std::move(aTemp);
rInsert[columnIndex].setModified(true);
io_aRow[columnIndex] = rInsert[columnIndex];
m_xCacheSet->mergeColumnValues(columnIndex,rInsert,io_aRow,o_ChangedColumns);
impl_updateRowFromCache_throw(io_aRow,o_ChangedColumns);
}
}
void ORowSetCache::updateNumericObject( sal_Int32 columnIndex, const Any& x
,ORowSetValueVector::Vector& io_aRow
,std::vector<sal_Int32>& o_ChangedColumns
)
{
checkUpdateConditions(columnIndex);
ORowSetValueVector::Vector& rInsert = **m_aInsertRow;
ORowSetValue aTemp;
aTemp.fill(x);
if ( rInsert[columnIndex] != aTemp )
{
rInsert[columnIndex].setBound(true);
rInsert[columnIndex] = std::move(aTemp);
rInsert[columnIndex].setModified(true);
io_aRow[columnIndex] = rInsert[columnIndex];
m_xCacheSet->mergeColumnValues(columnIndex,rInsert,io_aRow,o_ChangedColumns);
impl_updateRowFromCache_throw(io_aRow,o_ChangedColumns);
}
}
// XResultSet
bool ORowSetCache::next( )
{
if(!isAfterLast())
{
m_bBeforeFirst = false;
++m_nPosition;
// after we increment the position we have to check if we are already after the last row
checkPositionFlags();
if(!m_bAfterLast)
{
moveWindow();
OSL_ENSURE(((m_nPosition - m_nStartPos) - 1) < static_cast<sal_Int32>(m_pMatrix->size()),"Position is behind end()!");
m_aMatrixIter = calcPosition();
checkPositionFlags();
}
}
return !m_bAfterLast;
}
bool ORowSetCache::isFirst( ) const
{
return m_nPosition == 1; // ask resultset for
}
bool ORowSetCache::isLast( ) const
{
return m_nPosition == m_nRowCount;
}
void ORowSetCache::beforeFirst( )
{
if(!m_bBeforeFirst)
{
m_bAfterLast = false;
m_nPosition = 0;
m_bBeforeFirst = true;
m_xCacheSet->beforeFirst();
moveWindow();
m_aMatrixIter = m_pMatrix->end();
}
}
void ORowSetCache::afterLast( )
{
if(m_bAfterLast)
return;
m_bBeforeFirst = false;
m_bAfterLast = true;
if(!m_bRowCountFinal)
{
m_xCacheSet->last();
m_bRowCountFinal = true;
m_nRowCount = m_xCacheSet->getRow();// + 1 removed
}
m_xCacheSet->afterLast();
m_nPosition = 0;
m_aMatrixIter = m_pMatrix->end();
}
bool ORowSetCache::fillMatrix(sal_Int32& _nNewStartPos, sal_Int32 &_nNewEndPos)
{
OSL_ENSURE((_nNewStartPos != _nNewEndPos) || (_nNewStartPos == 0 && _nNewEndPos == 0 && m_nRowCount == 0),
"ORowSetCache::fillMatrix: StartPos and EndPos can not be equal (unless the recordset is empty)!");
// If _nNewStartPos >= 0, then fill the whole window with new data
// Else if _nNewStartPos == -1, then fill only segment [m_nEndPos, _nNewEndPos)
// Else, undefined (invalid argument)
OSL_ENSURE( _nNewStartPos >= -1, "ORowSetCache::fillMatrix: invalid _nNewStartPos" );
ORowSetMatrix::iterator aIter;
sal_Int32 i;
bool bCheck;
sal_Int32 requestedStartPos;
if ( _nNewStartPos == -1 )
{
aIter = m_pMatrix->begin() + (m_nEndPos - m_nStartPos);
i = m_nEndPos + 1;
requestedStartPos = m_nStartPos;
}
else
{
aIter = m_pMatrix->begin();
i = _nNewStartPos + 1;
requestedStartPos = _nNewStartPos;
}
bCheck = m_xCacheSet->absolute(i);
for(; i <= _nNewEndPos; ++i,++aIter)
{
if(bCheck)
{
if(!aIter->is())
*aIter = new ORowSetValueVector(m_xMetaData->getColumnCount());
m_xCacheSet->fillValueRow(*aIter,i);
}
else
{ // there are no more rows found so we can fetch some before start
if(!m_bRowCountFinal)
{
if(m_xCacheSet->previous()) // because we stand after the last row
m_nRowCount = m_xCacheSet->getRow(); // here we have the row count
if(!m_nRowCount)
m_nRowCount = i-1; // it can be that getRow return zero
m_bRowCountFinal = true;
}
const ORowSetMatrix::iterator aEnd = aIter;
ORowSetMatrix::const_iterator aRealEnd = m_pMatrix->end();
sal_Int32 nPos;
if (m_nRowCount >= m_nFetchSize)
{
nPos = m_nRowCount - m_nFetchSize;
}
else
{
nPos = 0;
}
_nNewStartPos = nPos;
_nNewEndPos = m_nRowCount;
++nPos;
bCheck = m_xCacheSet->absolute(nPos);
for(;bCheck && nPos <= requestedStartPos && aIter != aRealEnd; ++aIter, ++nPos)
{
if(!aIter->is())
*aIter = new ORowSetValueVector(m_xMetaData->getColumnCount());
m_xCacheSet->fillValueRow(*aIter, nPos);
bCheck = m_xCacheSet->next();
}
if(aIter != aEnd)
std::rotate(m_pMatrix->begin(),aEnd,aIter);
break;
}
bCheck = m_xCacheSet->next();
}
// we have to read one row forward to ensure that we know when we are on last row
// but only when we don't know it already
if(!m_bRowCountFinal)
{
if(!m_xCacheSet->next())
{
if(m_xCacheSet->previous()) // because we stand after the last row
m_nRowCount = m_xCacheSet->getRow(); // here we have the row count
m_bRowCountFinal = true;
}
else
m_nRowCount = std::max(i,m_nRowCount);
}
return bCheck;
}
// If m_nPosition is out of the current window,
// move it and update m_nStartPos and m_nEndPos
// Caller is responsible for updating m_aMatrixIter
void ORowSetCache::moveWindow()
{
OSL_ENSURE(m_nStartPos >= 0,"ORowSetCache::moveWindow: m_nStartPos is less than 0!");
OSL_ENSURE(m_nEndPos >= m_nStartPos,"ORowSetCache::moveWindow: m_nStartPos not smaller than m_nEndPos");
OSL_ENSURE(m_nEndPos-m_nStartPos <= m_nFetchSize,"ORowSetCache::moveWindow: m_nStartPos and m_nEndPos too far apart");
if ( m_nStartPos < m_nPosition && m_nPosition <= m_nEndPos )
{
// just move inside the window
OSL_ENSURE((m_nPosition - m_nStartPos) <= static_cast<sal_Int32>(m_pMatrix->size()),"Position is behind end()!");
// make double plus sure that we have fetched that row
m_aMatrixIter = calcPosition();
OSL_ENSURE(m_aMatrixIter != m_pMatrix->end(), "New m_aMatrixIter is at end(), but should not.");
if(!m_aMatrixIter->is())
{
bool bOk( m_xCacheSet->absolute( m_nPosition ) );
if ( bOk )
{
*m_aMatrixIter = new ORowSetValueVector(m_xMetaData->getColumnCount());
m_xCacheSet->fillValueRow(*m_aMatrixIter,m_nPosition);
// we have to read one row forward to ensure that we know when we are on last row
// but only when we don't know it already
if ( !m_bRowCountFinal )
{
bOk = m_xCacheSet->absolute( m_nPosition + 1 );
if ( bOk )
m_nRowCount = std::max(sal_Int32(m_nPosition+1),m_nRowCount);
}
}
if(!bOk && !m_bRowCountFinal)
{
// because we stand after the last row
m_nRowCount = m_xCacheSet->previous() ? m_xCacheSet->getRow() : 0;
m_bRowCountFinal = true;
}
}
return;
}
sal_Int32 nDiff = (m_nFetchSize - 1) / 2;
sal_Int32 nNewStartPos = (m_nPosition - nDiff) - 1; //m_nPosition is 1-based, but m_nStartPos is 0-based
sal_Int32 nNewEndPos = nNewStartPos + m_nFetchSize;
if ( nNewStartPos < 0 )
{
// The computed new window crashes through the floor (begins before first row);
// nNew*Pos has to be shifted by -nNewStartPos
nNewEndPos -= nNewStartPos;
nNewStartPos = 0;
}
if ( nNewStartPos < m_nStartPos )
{ // need to fill data *before* m_nStartPos
if ( nNewEndPos > m_nStartPos )
{ // The two regions are overlapping.
// We'll first rotate the contents of m_pMatrix so that the overlap area
// is positioned right; in the old window it is at the beginning,
// it has to go to the end.
// then we fill in the rows between new and old start pos.
bool bCheck;
bCheck = m_xCacheSet->absolute(nNewStartPos + 1);
// m_nEndPos < nNewEndPos when window not filled (e.g. there are fewer rows in total than window size)
m_nEndPos = std::min(nNewEndPos, m_nEndPos);
const sal_Int32 nOverlapSize = m_nEndPos - m_nStartPos;
const sal_Int32 nStartPosOffset = m_nStartPos - nNewStartPos; // by how much m_nStartPos moves
m_nStartPos = nNewStartPos;
OSL_ENSURE( o3tl::make_unsigned(nOverlapSize) <= m_pMatrix->size(), "new window end is after end of cache matrix!" );
// the first position in m_pMatrix whose data we don't keep;
// content will be moved to m_pMatrix.begin()
ORowSetMatrix::iterator aEnd (m_pMatrix->begin() + nOverlapSize);
// the first unused position after we are done; it == m_pMatrix.end() if and only if the window is full
ORowSetMatrix::iterator aNewEnd (aEnd + nStartPosOffset);
// *m_pMatrix now looks like:
// [0; nOverlapSize) i.e. [begin(); aEnd): data kept
// [nOverlapSize; nOverlapSize + nStartPosOffset) i.e. [aEnd, aNewEnd): new data of positions < old m_nStartPos
// [nOverlapSize + nStartPosOffset; size()) i.e. [aNewEnd, end()): unused
// Note that nOverlapSize + nStartPosOffset == m_nEndPos - m_nStartPos (new values)
// When we are finished:
// [0; nStartPosOffset) i.e. [begin(); aEnd): new data of positions < old m_nStartPos
// [nStartPosOffset; nOverlapSize + nStartPosOffset) i.e. [aEnd, aNewEnd): kept
// [nOverlapSize + nStartPosOffset; size()) i.e. [aNewEnd, end()): unused
if ( bCheck )
{
{
ORowSetMatrix::iterator aIter(aEnd);
sal_Int32 nPos = m_nStartPos + 1;
fill(aIter, aNewEnd, nPos, bCheck);
}
std::rotate(m_pMatrix->begin(), aEnd, aNewEnd);
if (!m_bModified)
{
// now correct the iterator in our iterator vector
// rotateCacheIterator(aEnd-m_pMatrix->begin()); //can't be used because they decrement and here we need to increment
for(auto& rCacheIter : m_aCacheIterators)
{
if ( !rCacheIter.second.pRowSet->isInsertRow()
&& rCacheIter.second.aIterator != m_pMatrix->end() )
{
const ptrdiff_t nDist = rCacheIter.second.aIterator - m_pMatrix->begin();
if ( nDist >= nOverlapSize )
{
// That's from outside the overlap area; invalidate iterator.
rCacheIter.second.aIterator = m_pMatrix->end();
}
else
{
// Inside overlap area: move to correct position
OSL_ENSURE(((nDist + nStartPosOffset) >= static_cast<ORowSetMatrix::difference_type>(0)) &&
((nDist + nStartPosOffset) < static_cast<sal_Int32>(m_pMatrix->size())),"Position is invalid!");
rCacheIter.second.aIterator += nStartPosOffset;
OSL_ENSURE(rCacheIter.second.aIterator >= m_pMatrix->begin()
&& rCacheIter.second.aIterator < m_pMatrix->end(),"Iterator out of area!");
}
}
}
}
}
else
{ // normally this should never happen
OSL_FAIL("What the hell is happen here!");
return;
}
}
else
{// no rows can be reused so fill again
reFillMatrix(nNewStartPos,nNewEndPos);
}
}
OSL_ENSURE(nNewStartPos >= m_nStartPos, "ORowSetCache::moveWindow internal error: new start pos before current start pos");
if ( m_nEndPos < nNewEndPos )
{ // need to fill data *after* m_nEndPos
if( nNewStartPos < m_nEndPos )
{ // The two regions are overlapping.
const sal_Int32 nRowsInCache = m_nEndPos - m_nStartPos;
if ( nRowsInCache < m_nFetchSize )
{
// There is some unused space in *m_pMatrix; fill it
OSL_ENSURE((nRowsInCache >= static_cast<ORowSetMatrix::difference_type>(0)) && (o3tl::make_unsigned(nRowsInCache) < m_pMatrix->size()),"Position is invalid!");
sal_Int32 nPos = m_nEndPos + 1;
bool bCheck = m_xCacheSet->absolute(nPos);
ORowSetMatrix::iterator aIter = m_pMatrix->begin() + nRowsInCache;
const sal_Int32 nRowsToFetch = std::min(nNewEndPos-m_nEndPos, m_nFetchSize-nRowsInCache);
const ORowSetMatrix::const_iterator aEnd = aIter + nRowsToFetch;
bCheck = fill(aIter, aEnd, nPos, bCheck);
m_nEndPos = nPos - 1;
OSL_ENSURE( (!bCheck && m_nEndPos <= nNewEndPos ) ||
( bCheck && m_nEndPos == nNewEndPos ),
"ORowSetCache::moveWindow opportunistic fetch-after-current-end went badly");
}
// A priori, the rows from begin() [inclusive] to (begin() + nNewStartPos - m_nStartPos) [exclusive]
// have to be refilled with new to-be-fetched rows.
// The rows behind this can be reused
ORowSetMatrix::iterator aIter = m_pMatrix->begin();
const sal_Int32 nNewStartPosInMatrix = nNewStartPos - m_nStartPos;
OSL_ENSURE((nNewStartPosInMatrix >= static_cast<ORowSetMatrix::difference_type>(0)) && (o3tl::make_unsigned(nNewStartPosInMatrix) < m_pMatrix->size()),"Position is invalid!");
// first position we reuse
const ORowSetMatrix::const_iterator aEnd = m_pMatrix->begin() + nNewStartPosInMatrix;
// End of used portion of the matrix. Is < m_pMatrix->end() if less data than window size
ORowSetMatrix::iterator aDataEnd = m_pMatrix->begin() + (m_nEndPos - m_nStartPos);
sal_Int32 nPos = m_nEndPos + 1;
bool bCheck = m_xCacheSet->absolute(nPos);
bCheck = fill(aIter, aEnd, nPos, bCheck); // refill the region we don't need anymore
//aIter and nPos are now the position *after* last filled in one!
// bind end to front
if(bCheck)
{
OSL_ENSURE(aIter == aEnd, "fill() said went till end, but did not.");
// rotate the end to the front
std::rotate(m_pMatrix->begin(), aIter, aDataEnd);
// now correct the iterator in our iterator vector
rotateCacheIterator( nNewStartPosInMatrix );
m_nStartPos = nNewStartPos;
m_nEndPos = nNewEndPos;
// now I can say how many rows we have
// we have to read one row forward to ensure that we know when we are on last row
// but only when we don't know it already
bool bOk = true;
if(!m_bRowCountFinal)
bOk = m_xCacheSet->next();
if(!bOk)
{
m_xCacheSet->previous(); // because we stand after the last row
m_nRowCount = nPos; // here we have the row count
OSL_ENSURE(nPos == m_xCacheSet->getRow(),"nPos is not valid!");
m_bRowCountFinal = true;
}
else if(!m_bRowCountFinal)
m_nRowCount = std::max(nPos+1, m_nRowCount); //+1 because we successfully moved to row after nPos
else
OSL_ENSURE(m_nRowCount >= nPos, "Final m_nRowCount is smaller than row I moved to!");
}
else
{ // the end was reached before or at end() so we can set the start before or at nNewStartPos
// and possibly keep more of m_pMatrix than planned.
const ORowSetMatrix::const_iterator::difference_type nFetchedRows = aIter - m_pMatrix->begin();
// *m_pMatrix now looks like:
// [0; nFetchedRows) i.e. [begin(); aIter): newly fetched data for positions m_nEndPos to m_nEndPos+nFetchedRows
// [nFetchedRows; ???) i.e. [aIter; aDataEnd]: data to be kept for positions m_nStartPos+nFetchedRows to ???
nPos -= 1;
m_nStartPos += nFetchedRows;
m_nEndPos = nPos;
std::rotate(m_pMatrix->begin(), aIter, aDataEnd);
// now correct the iterator in our iterator vector
rotateCacheIterator( nFetchedRows );
if ( !m_bRowCountFinal )
{
m_xCacheSet->previous(); // because we stand after the last row
m_nRowCount = std::max(m_nRowCount, nPos); // here we have the row count
OSL_ENSURE(nPos == m_xCacheSet->getRow(),"nPos isn't valid!");
m_bRowCountFinal = true;
}
}
// here we need only to check if the beginning row is valid. If not we have to fetch it.
if(!m_pMatrix->begin()->is())
{
aIter = m_pMatrix->begin();
nPos = m_nStartPos + 1;
bCheck = m_xCacheSet->absolute(nPos);
for(; !aIter->is() && bCheck;++aIter, ++nPos)
{
OSL_ENSURE(aIter != m_pMatrix->end(),"Invalid iterator");
*aIter = new ORowSetValueVector(m_xMetaData->getColumnCount());
m_xCacheSet->fillValueRow(*aIter, nPos);
bCheck = m_xCacheSet->next();
}
}
}
else // no rows can be reused so fill again
reFillMatrix(nNewStartPos,nNewEndPos);
}
if(!m_bRowCountFinal)
m_nRowCount = std::max(m_nPosition,m_nRowCount);
OSL_ENSURE(m_nStartPos >= 0,"ORowSetCache::moveWindow: m_nStartPos is less than 0!");
OSL_ENSURE(m_nEndPos > m_nStartPos,"ORowSetCache::moveWindow: m_nStartPos not smaller than m_nEndPos");
OSL_ENSURE(m_nEndPos-m_nStartPos <= m_nFetchSize,"ORowSetCache::moveWindow: m_nStartPos and m_nEndPos too far apart");
}
bool ORowSetCache::first( )
{
// First move to the first row.
// Then check if the cache window is at the beginning.
// If not, then position the window and fill it with data.
// We move the window smartly, i.e. we clear only the rows that are out of range
bool bRet = m_xCacheSet->first();
if(bRet)
{
m_bBeforeFirst = m_bAfterLast = false;
m_nPosition = 1;
moveWindow();
m_aMatrixIter = m_pMatrix->begin();
}
else
{
m_bRowCountFinal = m_bBeforeFirst = m_bAfterLast = true;
m_nRowCount = m_nPosition = 0;
OSL_ENSURE(m_bBeforeFirst || m_bNew,"ORowSetCache::first return false and BeforeFirst isn't true");
m_aMatrixIter = m_pMatrix->end();
}
return bRet;
}
bool ORowSetCache::last( )
{
bool bRet = m_xCacheSet->last();
if(bRet)
{
m_bBeforeFirst = m_bAfterLast = false;
if(!m_bRowCountFinal)
{
m_bRowCountFinal = true;
m_nRowCount = m_xCacheSet->getRow(); // not + 1
}
m_nPosition = m_xCacheSet->getRow();
moveWindow();
// we have to repositioning because moveWindow can modify the cache
m_xCacheSet->last();
OSL_ENSURE(((m_nPosition - m_nStartPos) - 1) < static_cast<sal_Int32>(m_pMatrix->size()),"Position is behind end()!");
m_aMatrixIter = calcPosition();
}
else
{
m_bRowCountFinal = m_bBeforeFirst = m_bAfterLast = true;
m_nRowCount = m_nPosition = 0;
OSL_ENSURE(m_bBeforeFirst,"ORowSetCache::last return false and BeforeFirst isn't true");
m_aMatrixIter = m_pMatrix->end();
}
#if OSL_DEBUG_LEVEL > 0
if(bRet)
{
assert((*m_aMatrixIter).is() && "ORowSetCache::last: Row not valid!");
}
#endif
return bRet;
}
sal_Int32 ORowSetCache::getRow( ) const
{
return (isBeforeFirst() || isAfterLast()) ? 0 : m_nPosition;
}
bool ORowSetCache::absolute( sal_Int32 row )
{
if(!row )
throw SQLException(DBA_RES(RID_STR_NO_ABS_ZERO),nullptr,SQLSTATE_GENERAL,1000,Any() );
if(row < 0)
{
// here we have to scroll from the last row to backward so we have to go to last row and
// and to the previous
if(m_bRowCountFinal || last())
{
m_nPosition = m_nRowCount + row + 1; // + row because row is negative and +1 because row==-1 means last row
if(m_nPosition < 1)
{
m_bBeforeFirst = true;
m_bAfterLast = false;
m_aMatrixIter = m_pMatrix->end();
}
else
{
m_bBeforeFirst = false;
m_bAfterLast = m_nPosition > m_nRowCount;
moveWindow();
OSL_ENSURE(((m_nPosition - m_nStartPos) - 1) < static_cast<sal_Int32>(m_pMatrix->size()),"Position is behind end()!");
m_aMatrixIter = calcPosition();
}
}
else
m_aMatrixIter = m_pMatrix->end();
}
else
{
m_nPosition = row;
// the position flags
m_bBeforeFirst = false;
checkPositionFlags();
if(!m_bAfterLast)
{
moveWindow();
checkPositionFlags();
if(!m_bAfterLast)
m_aMatrixIter = calcPosition();
else
m_aMatrixIter = m_pMatrix->end();
}
else
m_aMatrixIter = m_pMatrix->end();
}
return !(m_bAfterLast || m_bBeforeFirst);
}
bool ORowSetCache::relative( sal_Int32 rows )
{
bool bErg = true;
if(rows)
{
sal_Int32 nNewPosition = m_nPosition + rows;
if ( m_bBeforeFirst && rows > 0 )
nNewPosition = rows;
else if ( m_bRowCountFinal && m_bAfterLast && rows < 0 )
nNewPosition = m_nRowCount + 1 + rows;
else
if ( m_bBeforeFirst || ( m_bRowCountFinal && m_bAfterLast ) )
throw SQLException( DBA_RES( RID_STR_NO_RELATIVE ), nullptr, SQLSTATE_GENERAL, 1000, Any() );
if ( nNewPosition )
{
bErg = absolute( nNewPosition );
bErg = bErg && !isAfterLast() && !isBeforeFirst();
}
else
{
m_bBeforeFirst = true;
bErg = false;
}
}
return bErg;
}
bool ORowSetCache::previous( )
{
bool bRet = false;
if(!isBeforeFirst())
{
if(m_bAfterLast) // we stand after the last row so one before is the last row
bRet = last();
else
{
m_bAfterLast = false;
--m_nPosition;
moveWindow();
OSL_ENSURE(((m_nPosition - m_nStartPos) - 1) < static_cast<sal_Int32>(m_pMatrix->size()),"Position is behind end()!");
checkPositionFlags();
if(!m_nPosition)
{
m_bBeforeFirst = true;
m_aMatrixIter = m_pMatrix->end();
}
else
{
m_aMatrixIter = calcPosition();
bRet = (*m_aMatrixIter).is();
}
}
}
return bRet;
}
void ORowSetCache::refreshRow( )
{
if(isAfterLast())
throw SQLException(DBA_RES(RID_STR_NO_REFRESH_AFTERLAST),nullptr,SQLSTATE_GENERAL,1000,Any() );
OSL_ENSURE(m_aMatrixIter != m_pMatrix->end(),"refreshRow() called for invalid row!");
m_xCacheSet->refreshRow();
m_xCacheSet->fillValueRow(*m_aMatrixIter,m_nPosition);
if ( m_bNew )
{
cancelRowModification();
}
}
bool ORowSetCache::rowUpdated( )
{
return m_xCacheSet->rowUpdated();
}
bool ORowSetCache::rowInserted( )
{
return m_xCacheSet->rowInserted();
}
// XResultSetUpdate
bool ORowSetCache::insertRow(std::vector< Any >& o_aBookmarks)
{
if ( !m_bNew || !m_aInsertRow->is() )
throw SQLException(DBA_RES(RID_STR_NO_MOVETOINSERTROW_CALLED),nullptr,SQLSTATE_GENERAL,1000,Any() );
m_xCacheSet->insertRow(*m_aInsertRow,m_aUpdateTable);
bool bRet( rowInserted() );
if ( bRet )
{
++m_nRowCount;
Any aBookmark = (**m_aInsertRow)[0].makeAny();
m_bAfterLast = m_bBeforeFirst = false;
if(aBookmark.hasValue())
{
moveToBookmark(aBookmark);
// update the cached values
ORowSetValueVector::Vector& rCurrentRow = **m_aMatrixIter;
ORowSetMatrix::const_iterator aIter = m_pMatrix->begin();
for(;aIter != m_pMatrix->end();++aIter)
{
if ( m_aMatrixIter != aIter && aIter->is() && m_xCacheSet->columnValuesUpdated(**aIter,rCurrentRow) )
{
o_aBookmarks.push_back(lcl_getBookmark((**aIter)[0], m_xCacheSet.get()));
}
}
}
else
{
OSL_FAIL("There must be a bookmark after the row was inserted!");
}
}
return bRet;
}
void ORowSetCache::resetInsertRow(bool _bClearInsertRow)
{
if ( _bClearInsertRow )
clearInsertRow();
m_bNew = false;
m_bModified = false;
}
void ORowSetCache::cancelRowModification()
{
// clear the insertrow references -> implies that the current row of the rowset changes as well
for(auto& rCacheIter : m_aCacheIterators)
{
if ( rCacheIter.second.pRowSet->isInsertRow() && rCacheIter.second.aIterator == m_aInsertRow )
rCacheIter.second.aIterator = m_pMatrix->end();
}
resetInsertRow(false);
}
void ORowSetCache::updateRow( ORowSetMatrix::iterator const & _rUpdateRow, std::vector< Any >& o_aBookmarks )
{
if(isAfterLast() || isBeforeFirst())
throw SQLException(DBA_RES(RID_STR_NO_UPDATEROW),nullptr,SQLSTATE_GENERAL,1000,Any() );
Any aBookmark = (**_rUpdateRow)[0].makeAny();
OSL_ENSURE(aBookmark.hasValue(),"Bookmark must have a value!");
// here we don't have to reposition our CacheSet, when we try to update a row,
// the row was already fetched
moveToBookmark(aBookmark);
m_xCacheSet->updateRow(*_rUpdateRow,*m_aMatrixIter,m_aUpdateTable);
// refetch the whole row
(*m_aMatrixIter) = nullptr;
if ( moveToBookmark(aBookmark) )
{
// update the cached values
ORowSetValueVector::Vector& rCurrentRow = **m_aMatrixIter;
ORowSetMatrix::const_iterator aIter = m_pMatrix->begin();
for(;aIter != m_pMatrix->end();++aIter)
{
if ( m_aMatrixIter != aIter && aIter->is() && m_xCacheSet->columnValuesUpdated(**aIter,rCurrentRow) )
{
o_aBookmarks.push_back(lcl_getBookmark((**aIter)[0], m_xCacheSet.get()));
}
}
}
m_bModified = false;
}
bool ORowSetCache::deleteRow( )
{
if(isAfterLast() || isBeforeFirst())
throw SQLException(DBA_RES(RID_STR_NO_DELETEROW),nullptr,SQLSTATE_GENERAL,1000,Any() );
m_xCacheSet->deleteRow(*m_aMatrixIter,m_aUpdateTable);
if ( !m_xCacheSet->rowDeleted() )
return false;
--m_nRowCount;
OSL_ENSURE(((m_nPosition - m_nStartPos) - 1) < static_cast<sal_Int32>(m_pMatrix->size()),"Position is behind end()!");
ORowSetMatrix::iterator aPos = calcPosition();
(*aPos) = nullptr;
ORowSetMatrix::const_iterator aEnd = m_pMatrix->end();
for(++aPos;aPos != aEnd && aPos->is();++aPos)
{
*(aPos-1) = *aPos;
(*aPos) = nullptr;
}
m_aMatrixIter = m_pMatrix->end();
--m_nPosition;
return true;
}
void ORowSetCache::cancelRowUpdates( )
{
m_bNew = m_bModified = false;
if(!m_nPosition)
{
OSL_FAIL("cancelRowUpdates:Invalid positions pos == 0");
::dbtools::throwFunctionSequenceException(nullptr);
}
if(m_xCacheSet->absolute(m_nPosition))
m_xCacheSet->fillValueRow(*m_aMatrixIter,m_nPosition);
else
{
OSL_FAIL("cancelRowUpdates couldn't position right with absolute");
::dbtools::throwFunctionSequenceException(nullptr);
}
}
void ORowSetCache::moveToInsertRow( )
{
m_bNew = true;
m_bAfterLast = false;
m_aInsertRow = m_pInsertMatrix->begin();
if(!m_aInsertRow->is())
*m_aInsertRow = new ORowSetValueVector(m_xMetaData->getColumnCount());
// we don't unbound the bookmark column
ORowSetValueVector::Vector::iterator aIter = (*m_aInsertRow)->begin()+1;
ORowSetValueVector::Vector::const_iterator aEnd = (*m_aInsertRow)->end();
for(sal_Int32 i = 1;aIter != aEnd;++aIter,++i)
{
aIter->setBound(false);
aIter->setModified(false);
aIter->setNull();
aIter->setTypeKind(m_xMetaData->getColumnType(i));
}
}
ORowSetCacheIterator ORowSetCache::createIterator(ORowSetBase* _pRowSet)
{
ORowSetCacheIterator_Helper aHelper;
aHelper.aIterator = m_pMatrix->end();
aHelper.pRowSet = _pRowSet;
return ORowSetCacheIterator(m_aCacheIterators.insert(m_aCacheIterators.begin(),ORowSetCacheMap::value_type(m_aCacheIterators.size()+1,aHelper)),this,_pRowSet);
}
void ORowSetCache::deleteIterator(const ORowSetBase* _pRowSet)
{
ORowSetCacheMap::const_iterator aCacheIter = m_aCacheIterators.begin();
for(;aCacheIter != m_aCacheIterators.end();)
{
if ( aCacheIter->second.pRowSet == _pRowSet )
{
aCacheIter = m_aCacheIterators.erase(aCacheIter);
}
else
++aCacheIter;
}
}
void ORowSetCache::rotateCacheIterator(ORowSetMatrix::difference_type _nDist)
{
if (m_bModified)
return;
if(!_nDist)
return;
// now correct the iterator in our iterator vector
for(auto& rCacheIter : m_aCacheIterators)
{
if ( !rCacheIter.second.pRowSet->isInsertRow()
&& rCacheIter.second.aIterator != m_pMatrix->end())
{
ptrdiff_t nDist = rCacheIter.second.aIterator - m_pMatrix->begin();
if(nDist < _nDist)
{
rCacheIter.second.aIterator = m_pMatrix->end();
}
else
{
OSL_ENSURE((rCacheIter.second.aIterator - m_pMatrix->begin()) >= _nDist,"Invalid Dist value!");
rCacheIter.second.aIterator -= _nDist;
OSL_ENSURE(rCacheIter.second.aIterator >= m_pMatrix->begin()
&& rCacheIter.second.aIterator < m_pMatrix->end(),"Iterator out of area!");
}
}
}
}
void ORowSetCache::rotateAllCacheIterators()
{
if (m_bModified)
return;
// now correct the iterator in our iterator vector
for (auto& rCacheIter : m_aCacheIterators)
{
if (!rCacheIter.second.pRowSet->isInsertRow())
{
rCacheIter.second.aIterator = m_pMatrix->end();
}
}
}
void ORowSetCache::setUpdateIterator(const ORowSetMatrix::iterator& _rOriginalRow)
{
m_aInsertRow = m_pInsertMatrix->begin();
if(!m_aInsertRow->is())
*m_aInsertRow = new ORowSetValueVector(m_xMetaData->getColumnCount());
(*(*m_aInsertRow)) = *(*_rOriginalRow);
// we don't unbound the bookmark column
for(auto& rItem : **m_aInsertRow)
rItem.setModified(false);
}
void ORowSetCache::checkPositionFlags()
{
if(m_bRowCountFinal)
{
m_bAfterLast = m_nPosition > m_nRowCount;
if(m_bAfterLast)
m_nPosition = 0;//m_nRowCount;
}
}
void ORowSetCache::checkUpdateConditions(sal_Int32 columnIndex)
{
if(m_bAfterLast || columnIndex >= static_cast<sal_Int32>((*m_aInsertRow)->size()))
throwFunctionSequenceException(m_xSet.get());
}
bool ORowSetCache::checkInnerJoin(const ::connectivity::OSQLParseNode *pNode,const Reference< XConnection>& _xConnection,const OUString& _sUpdateTableName)
{
bool bOk = false;
if (pNode->count() == 3 && // expression in parentheses
SQL_ISPUNCTUATION(pNode->getChild(0),"(") &&
SQL_ISPUNCTUATION(pNode->getChild(2),")"))
{
bOk = checkInnerJoin(pNode->getChild(1),_xConnection,_sUpdateTableName);
}
else if ((SQL_ISRULE(pNode,search_condition) || SQL_ISRULE(pNode,boolean_term)) && // AND/OR link
pNode->count() == 3)
{
// only allow an AND link
if ( SQL_ISTOKEN(pNode->getChild(1),AND) )
bOk = checkInnerJoin(pNode->getChild(0),_xConnection,_sUpdateTableName)
&& checkInnerJoin(pNode->getChild(2),_xConnection,_sUpdateTableName);
}
else if (SQL_ISRULE(pNode,comparison_predicate))
{
// only the comparison of columns is allowed
OSL_ENSURE(pNode->count() == 3,"checkInnerJoin: Error in Parse Tree");
if (!(SQL_ISRULE(pNode->getChild(0),column_ref) &&
SQL_ISRULE(pNode->getChild(2),column_ref) &&
pNode->getChild(1)->getNodeType() == SQLNodeType::Equal))
{
bOk = false;
}
else
{
OUString sColumnName,sTableRange;
OSQLParseTreeIterator::getColumnRange( pNode->getChild(0), _xConnection, sColumnName, sTableRange );
bOk = sTableRange == _sUpdateTableName;
if ( !bOk )
{
OSQLParseTreeIterator::getColumnRange( pNode->getChild(2), _xConnection, sColumnName, sTableRange );
bOk = sTableRange == _sUpdateTableName;
}
}
}
return bOk;
}
bool ORowSetCache::checkJoin(const Reference< XConnection>& _xConnection,
const Reference< XSingleSelectQueryAnalyzer >& _xAnalyzer,
const OUString& _sUpdateTableName )
{
bool bOk = false;
OUString sSql = _xAnalyzer->getQuery();
OUString sErrorMsg;
::connectivity::OSQLParser aSqlParser( m_aContext );
std::unique_ptr< ::connectivity::OSQLParseNode> pSqlParseNode( aSqlParser.parseTree(sErrorMsg,sSql));
if ( pSqlParseNode && SQL_ISRULE(pSqlParseNode, select_statement) )
{
OSQLParseNode* pTableRefCommalist = pSqlParseNode->getByRule(::connectivity::OSQLParseNode::table_ref_commalist);
OSL_ENSURE(pTableRefCommalist,"NO tables why!?");
if(pTableRefCommalist && pTableRefCommalist->count() == 1)
{
// we found only one element so it must some kind of join here
OSQLParseNode* pJoin = pTableRefCommalist->getByRule(::connectivity::OSQLParseNode::qualified_join);
if(pJoin)
{ // we are only interested in qualified joins like RIGHT or LEFT
OSQLParseNode* pJoinType = pJoin->getChild(1);
OSQLParseNode* pOuterType = nullptr;
if(SQL_ISRULE(pJoinType,join_type) && pJoinType->count() == 2)
pOuterType = pJoinType->getChild(0);
else if(SQL_ISRULE(pJoinType,outer_join_type))
pOuterType = pJoinType;
bool bCheck = false;
bool bLeftSide = false;
if(pOuterType)
{ // found outer join
bLeftSide = SQL_ISTOKEN(pOuterType->getChild(0),LEFT);
bCheck = bLeftSide || SQL_ISTOKEN(pOuterType->getChild(0),RIGHT);
}
if(bCheck)
{ // here we know that we have to check on which side our table resides
const OSQLParseNode* pTableRef;
if(bLeftSide)
pTableRef = pJoin->getChild(0);
else
pTableRef = pJoin->getChild(3);
OSL_ENSURE(SQL_ISRULE(pTableRef,table_ref),"Must be a tableref here!");
OUString sTableRange = OSQLParseNode::getTableRange(pTableRef);
if(sTableRange.isEmpty())
pTableRef->getChild(0)->parseNodeToStr( sTableRange, _xConnection, nullptr, false, false );
bOk = sTableRange == _sUpdateTableName;
}
}
}
else
{
OSQLParseNode* pWhereOpt = pSqlParseNode->getChild(3)->getChild(1);
if ( pWhereOpt && !pWhereOpt->isLeaf() )
bOk = checkInnerJoin(pWhereOpt->getChild(1),_xConnection,_sUpdateTableName);
}
}
return bOk;
}
void ORowSetCache::clearInsertRow()
{
// we don't unbound the bookmark column
if ( m_aInsertRow != m_pInsertMatrix->end() && m_aInsertRow->is() )
{
ORowSetValueVector::Vector::iterator aIter = (*m_aInsertRow)->begin()+1;
ORowSetValueVector::Vector::const_iterator aEnd = (*m_aInsertRow)->end();
for(;aIter != aEnd;++aIter)
{
aIter->setBound(false);
aIter->setModified(false);
aIter->setNull();
}
}
}
ORowSetMatrix::iterator ORowSetCache::calcPosition() const
{
sal_Int32 nValue = (m_nPosition - m_nStartPos) - 1;
OSL_ENSURE((nValue >= static_cast<ORowSetMatrix::difference_type>(0)) && (o3tl::make_unsigned(nValue) < m_pMatrix->size()),"Position is invalid!");
return ( nValue < 0 || o3tl::make_unsigned(nValue) >= m_pMatrix->size() ) ? m_pMatrix->end() : (m_pMatrix->begin() + nValue);
}
TORowSetOldRowHelperRef ORowSetCache::registerOldRow()
{
TORowSetOldRowHelperRef pRef = new ORowSetOldRowHelper(ORowSetRow());
m_aOldRows.push_back(pRef);
return pRef;
}
void ORowSetCache::deregisterOldRow(const TORowSetOldRowHelperRef& _rRow)
{
TOldRowSetRows::iterator aOldRowIter = std::find_if(m_aOldRows.begin(), m_aOldRows.end(),
[&_rRow](const TORowSetOldRowHelperRef& rxOldRow) { return rxOldRow.get() == _rRow.get(); });
if (aOldRowIter != m_aOldRows.end())
m_aOldRows.erase(aOldRowIter);
}
bool ORowSetCache::reFillMatrix(sal_Int32 _nNewStartPos, sal_Int32 _nNewEndPos)
{
for (const auto& rxOldRow : m_aOldRows)
{
if ( rxOldRow.is() && rxOldRow->getRow().is() )
rxOldRow->setRow(new ORowSetValueVector( *(rxOldRow->getRow()) ) );
}
sal_Int32 nNewSt = _nNewStartPos;
bool bRet = fillMatrix(nNewSt,_nNewEndPos);
m_nStartPos = nNewSt;
m_nEndPos = _nNewEndPos;
rotateAllCacheIterators(); // invalidate every iterator
return bRet;
}
bool ORowSetCache::fill(ORowSetMatrix::iterator& _aIter, const ORowSetMatrix::const_iterator& _aEnd, sal_Int32& _nPos, bool _bCheck)
{
const sal_Int32 nColumnCount = m_xMetaData->getColumnCount();
for (; _bCheck && _aIter != _aEnd; ++_aIter, ++_nPos)
{
if ( !_aIter->is() )
*_aIter = new ORowSetValueVector(nColumnCount);
else
{
for (const auto& rxOldRow : m_aOldRows)
{
if ( rxOldRow->getRow() == *_aIter )
*_aIter = new ORowSetValueVector(nColumnCount);
}
}
m_xCacheSet->fillValueRow(*_aIter, _nPos);
_bCheck = m_xCacheSet->next();
}
return _bCheck;
}
bool ORowSetCache::isResultSetChanged() const
{
return m_xCacheSet->isResultSetChanged();
}
void ORowSetCache::reset(const Reference< XResultSet>& _xDriverSet)
{
m_xSet = _xDriverSet;
m_xMetaData.set(Reference< XResultSetMetaDataSupplier >(_xDriverSet,UNO_QUERY_THROW)->getMetaData());
m_xCacheSet->reset(_xDriverSet);
m_bRowCountFinal = false;
m_nRowCount = 0;
reFillMatrix(m_nStartPos,m_nEndPos);
}
void ORowSetCache::impl_updateRowFromCache_throw(ORowSetValueVector::Vector& io_aRow
,std::vector<sal_Int32> const & o_ChangedColumns)
{
if ( o_ChangedColumns.size() > 1 )
{
for (auto const& elem : *m_pMatrix)
{
if ( elem.is() && m_xCacheSet->updateColumnValues(*elem,io_aRow,o_ChangedColumns))
{
return;
}
}
m_xCacheSet->fillMissingValues(io_aRow);
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V547 Expression '!m_nPrivileges' is always true.
↑ V547 Expression '!m_nPrivileges' is always true.
↑ V560 A part of conditional expression is always true: nNullable == ColumnValue::NO_NULLS.