/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <sal/config.h>
#include <com/sun/star/frame/XModel.hpp>
#include <com/sun/star/container/XIndexAccess.hpp>
#include <com/sun/star/sheet/XSpreadsheetDocument.hpp>
#include <com/sun/star/sheet/XSpreadsheet.hpp>
#include <com/sun/star/sheet/XSolver.hpp>
#include <com/sun/star/sheet/XSolverDescription.hpp>
#include <com/sun/star/table/CellAddress.hpp>
#include <com/sun/star/table/CellContentType.hpp>
#include <com/sun/star/table/XCell.hpp>
#include <com/sun/star/lang/XServiceInfo.hpp>
#include <rtl/math.hxx>
#include <cppuhelper/implbase.hxx>
#include <cppuhelper/supportsservice.hxx>
#include <comphelper/compbase.hxx>
#include <comphelper/propertycontainer2.hxx>
#include <comphelper/proparrhlp.hxx>
#include <cmath>
#include <vector>
#include <limits>
#include <chrono>
#include <random>
#include <unotools/resmgr.hxx>
#include "DifferentialEvolution.hxx"
#include "ParticelSwarmOptimization.hxx"
#include <strings.hrc>
namespace com::sun::star::uno
{
class XComponentContext;
}
using namespace css;
namespace
{
struct Bound
{
double lower;
double upper;
Bound()
// float bounds should be low/high enough for all practical uses
// otherwise we are too far away from the solution
: lower(std::numeric_limits<float>::lowest())
, upper(std::numeric_limits<float>::max())
{
}
void updateBound(sheet::SolverConstraintOperator eOp, double fValue)
{
if (eOp == sheet::SolverConstraintOperator_LESS_EQUAL)
{
// if we set the bound multiple times use the one which includes both values
// for example bound values 100, 120, 150 -> use 100 -> the lowest one
if (fValue < upper)
upper = fValue;
}
else if (eOp == sheet::SolverConstraintOperator_GREATER_EQUAL)
{
if (fValue > lower)
lower = fValue;
}
else if (eOp == sheet::SolverConstraintOperator_EQUAL)
{
lower = fValue;
upper = fValue;
}
}
};
enum
{
PROP_NONNEGATIVE,
PROP_INTEGER,
PROP_TIMEOUT,
PROP_ALGORITHM,
};
} // end anonymous namespace
typedef comphelper::WeakImplHelper<sheet::XSolver, sheet::XSolverDescription, lang::XServiceInfo>
SwarmSolver_Base;
namespace
{
class SwarmSolver : public comphelper::OPropertyContainer2,
public comphelper::OPropertyArrayUsageHelper<SwarmSolver>,
public SwarmSolver_Base
{
private:
uno::Reference<sheet::XSpreadsheetDocument> mxDocument;
table::CellAddress maObjective;
uno::Sequence<table::CellAddress> maVariables;
uno::Sequence<sheet::SolverConstraint> maConstraints;
bool mbMaximize;
// set via XPropertySet
bool mbNonNegative;
bool mbInteger;
sal_Int32 mnTimeout;
sal_Int32 mnAlgorithm;
// results
bool mbSuccess;
double mfResultValue;
uno::Sequence<double> maSolution;
OUString maStatus;
std::vector<Bound> maBounds;
std::vector<sheet::SolverConstraint> maNonBoundedConstraints;
private:
static OUString getResourceString(TranslateId aId);
uno::Reference<table::XCell> getCell(const table::CellAddress& rPosition);
void setValue(const table::CellAddress& rPosition, double fValue);
double getValue(const table::CellAddress& rPosition);
public:
SwarmSolver()
: mbMaximize(true)
, mbNonNegative(false)
, mbInteger(false)
, mnTimeout(60000)
, mnAlgorithm(0)
, mbSuccess(false)
, mfResultValue(0.0)
{
registerProperty(u"NonNegative"_ustr, PROP_NONNEGATIVE, 0, &mbNonNegative,
cppu::UnoType<decltype(mbNonNegative)>::get());
registerProperty(u"Integer"_ustr, PROP_INTEGER, 0, &mbInteger,
cppu::UnoType<decltype(mbInteger)>::get());
registerProperty(u"Timeout"_ustr, PROP_TIMEOUT, 0, &mnTimeout,
cppu::UnoType<decltype(mnTimeout)>::get());
registerProperty(u"Algorithm"_ustr, PROP_ALGORITHM, 0, &mnAlgorithm,
cppu::UnoType<decltype(mnAlgorithm)>::get());
}
DECLARE_XINTERFACE()
DECLARE_XTYPEPROVIDER()
virtual uno::Reference<beans::XPropertySetInfo> SAL_CALL getPropertySetInfo() override
{
return createPropertySetInfo(getInfoHelper());
}
// OPropertySetHelper
virtual cppu::IPropertyArrayHelper& getInfoHelper() override { return *getArrayHelper(); }
// OPropertyArrayUsageHelper
virtual cppu::IPropertyArrayHelper* createArrayHelper() const override
{
uno::Sequence<beans::Property> aProperties;
describeProperties(aProperties);
return new cppu::OPropertyArrayHelper(aProperties);
}
// XSolver
virtual uno::Reference<sheet::XSpreadsheetDocument> SAL_CALL getDocument() override
{
return mxDocument;
}
virtual void SAL_CALL
setDocument(const uno::Reference<sheet::XSpreadsheetDocument>& rDocument) override
{
mxDocument = rDocument;
}
virtual table::CellAddress SAL_CALL getObjective() override { return maObjective; }
virtual void SAL_CALL setObjective(const table::CellAddress& rObjective) override
{
maObjective = rObjective;
}
virtual uno::Sequence<table::CellAddress> SAL_CALL getVariables() override
{
return maVariables;
}
virtual void SAL_CALL setVariables(const uno::Sequence<table::CellAddress>& rVariables) override
{
maVariables = rVariables;
}
virtual uno::Sequence<sheet::SolverConstraint> SAL_CALL getConstraints() override
{
return maConstraints;
}
virtual void SAL_CALL
setConstraints(const uno::Sequence<sheet::SolverConstraint>& rConstraints) override
{
maConstraints = rConstraints;
}
virtual sal_Bool SAL_CALL getMaximize() override { return mbMaximize; }
virtual void SAL_CALL setMaximize(sal_Bool bMaximize) override { mbMaximize = bMaximize; }
virtual sal_Bool SAL_CALL getSuccess() override { return mbSuccess; }
virtual double SAL_CALL getResultValue() override { return mfResultValue; }
virtual uno::Sequence<double> SAL_CALL getSolution() override { return maSolution; }
virtual void SAL_CALL solve() override;
// XSolverDescription
virtual OUString SAL_CALL getComponentDescription() override
{
return SwarmSolver::getResourceString(RID_SWARM_SOLVER_COMPONENT);
}
virtual OUString SAL_CALL getStatusDescription() override { return maStatus; }
virtual OUString SAL_CALL getPropertyDescription(const OUString& rPropertyName) override
{
TranslateId pResId;
switch (getInfoHelper().getHandleByName(rPropertyName))
{
case PROP_NONNEGATIVE:
pResId = RID_PROPERTY_NONNEGATIVE;
break;
case PROP_INTEGER:
pResId = RID_PROPERTY_INTEGER;
break;
case PROP_TIMEOUT:
pResId = RID_PROPERTY_TIMEOUT;
break;
case PROP_ALGORITHM:
pResId = RID_PROPERTY_ALGORITHM;
break;
default:
break;
}
return SwarmSolver::getResourceString(pResId);
}
// XServiceInfo
virtual OUString SAL_CALL getImplementationName() override
{
return u"com.sun.star.comp.Calc.SwarmSolver"_ustr;
}
sal_Bool SAL_CALL supportsService(const OUString& rServiceName) override
{
return cppu::supportsService(this, rServiceName);
}
uno::Sequence<OUString> SAL_CALL getSupportedServiceNames() override
{
return { u"com.sun.star.sheet.Solver"_ustr };
}
private:
void applyVariables(std::vector<double> const& rVariables);
bool doesViolateConstraints();
public:
double calculateFitness(std::vector<double> const& rVariables);
size_t getDimensionality() const;
void initializeVariables(std::vector<double>& rVariables, std::mt19937& rGenerator);
double clampVariable(size_t nVarIndex, double fValue);
double boundVariable(size_t nVarIndex, double fValue);
};
}
OUString SwarmSolver::getResourceString(TranslateId aId)
{
if (!aId)
return OUString();
return Translate::get(aId, Translate::Create("scc"));
}
uno::Reference<table::XCell> SwarmSolver::getCell(const table::CellAddress& rPosition)
{
uno::Reference<container::XIndexAccess> xSheets(mxDocument->getSheets(), uno::UNO_QUERY);
uno::Reference<sheet::XSpreadsheet> xSheet(xSheets->getByIndex(rPosition.Sheet),
uno::UNO_QUERY);
return xSheet->getCellByPosition(rPosition.Column, rPosition.Row);
}
void SwarmSolver::setValue(const table::CellAddress& rPosition, double fValue)
{
getCell(rPosition)->setValue(fValue);
}
double SwarmSolver::getValue(const table::CellAddress& rPosition)
{
return getCell(rPosition)->getValue();
}
IMPLEMENT_FORWARD_XINTERFACE2(SwarmSolver, SwarmSolver_Base, comphelper::OPropertyContainer2)
IMPLEMENT_FORWARD_XTYPEPROVIDER2(SwarmSolver, SwarmSolver_Base, comphelper::OPropertyContainer2)
void SwarmSolver::applyVariables(std::vector<double> const& rVariables)
{
for (sal_Int32 i = 0; i < maVariables.getLength(); ++i)
{
setValue(maVariables[i], rVariables[i]);
}
}
double SwarmSolver::calculateFitness(std::vector<double> const& rVariables)
{
applyVariables(rVariables);
if (doesViolateConstraints())
return std::numeric_limits<float>::lowest();
double x = getValue(maObjective);
if (mbMaximize)
return x;
else
return -x;
}
void SwarmSolver::initializeVariables(std::vector<double>& rVariables, std::mt19937& rGenerator)
{
int nTry = 1;
bool bConstraintsOK = false;
while (!bConstraintsOK && nTry < 10)
{
size_t noVariables(maVariables.getLength());
rVariables.resize(noVariables);
for (size_t i = 0; i < noVariables; ++i)
{
Bound const& rBound = maBounds[i];
if (mbInteger)
{
sal_Int64 intLower(rBound.lower);
sal_Int64 intUpper(rBound.upper);
std::uniform_int_distribution<sal_Int64> random(intLower, intUpper);
rVariables[i] = double(random(rGenerator));
}
else
{
std::uniform_real_distribution<double> random(rBound.lower, rBound.upper);
rVariables[i] = random(rGenerator);
}
}
applyVariables(rVariables);
bConstraintsOK = !doesViolateConstraints();
nTry++;
}
}
double SwarmSolver::clampVariable(size_t nVarIndex, double fValue)
{
Bound const& rBound = maBounds[nVarIndex];
double fResult = std::clamp(fValue, rBound.lower, rBound.upper);
if (mbInteger)
return std::trunc(fResult);
return fResult;
}
double SwarmSolver::boundVariable(size_t nVarIndex, double fValue)
{
Bound const& rBound = maBounds[nVarIndex];
// double fResult = std::max(std::min(fValue, rBound.upper), rBound.lower);
double fResult = fValue;
while (fResult < rBound.lower || fResult > rBound.upper)
{
if (fResult < rBound.lower)
fResult = rBound.upper - (rBound.lower - fResult);
if (fResult > rBound.upper)
fResult = (fResult - rBound.upper) + rBound.lower;
}
if (mbInteger)
return std::trunc(fResult);
return fResult;
}
size_t SwarmSolver::getDimensionality() const { return maVariables.getLength(); }
bool SwarmSolver::doesViolateConstraints()
{
for (const sheet::SolverConstraint& rConstraint : maNonBoundedConstraints)
{
double fLeftValue = getValue(rConstraint.Left);
double fRightValue = 0.0;
table::CellAddress aCellAddress;
if (rConstraint.Right >>= aCellAddress)
{
fRightValue = getValue(aCellAddress);
}
else if (rConstraint.Right >>= fRightValue)
{
// empty
}
else
{
return false;
}
sheet::SolverConstraintOperator eOp = rConstraint.Operator;
switch (eOp)
{
case sheet::SolverConstraintOperator_LESS_EQUAL:
{
if (fLeftValue > fRightValue)
return true;
}
break;
case sheet::SolverConstraintOperator_GREATER_EQUAL:
{
if (fLeftValue < fRightValue)
return true;
}
break;
case sheet::SolverConstraintOperator_EQUAL:
{
if (!rtl::math::approxEqual(fLeftValue, fRightValue))
return true;
}
break;
default:
break;
}
}
return false;
}
namespace
{
template <typename SwarmAlgorithm> class SwarmRunner
{
private:
SwarmAlgorithm& mrAlgorithm;
double mfTimeout;
static constexpr size_t mnPopulationSize = 40;
static constexpr int constNumberOfGenerationsWithoutChange = 50;
std::chrono::high_resolution_clock::time_point maStart;
std::chrono::high_resolution_clock::time_point maEnd;
public:
SwarmRunner(SwarmAlgorithm& rAlgorithm)
: mrAlgorithm(rAlgorithm)
, mfTimeout(5000)
{
}
void setTimeout(double fTimeout) { mfTimeout = fTimeout; }
std::vector<double> const& solve()
{
using std::chrono::duration_cast;
using std::chrono::high_resolution_clock;
using std::chrono::milliseconds;
mrAlgorithm.initialize();
maEnd = maStart = high_resolution_clock::now();
int nLastChange = 0;
while ((mrAlgorithm.getGeneration() - nLastChange) < constNumberOfGenerationsWithoutChange
&& duration_cast<milliseconds>(maEnd - maStart).count() < mfTimeout)
{
bool bChange = mrAlgorithm.next();
if (bChange)
nLastChange = mrAlgorithm.getGeneration();
maEnd = high_resolution_clock::now();
}
return mrAlgorithm.getResult();
}
};
}
void SAL_CALL SwarmSolver::solve()
{
uno::Reference<frame::XModel> xModel(mxDocument, uno::UNO_QUERY_THROW);
maStatus.clear();
mbSuccess = false;
if (!maVariables.getLength())
return;
maBounds.resize(maVariables.getLength());
xModel->lockControllers();
if (mbNonNegative)
{
for (Bound& rBound : maBounds)
rBound.lower = 0;
}
// Determine variable bounds
for (sheet::SolverConstraint const& rConstraint : maConstraints)
{
table::CellAddress aLeftCellAddress = rConstraint.Left;
sheet::SolverConstraintOperator eOp = rConstraint.Operator;
size_t index = 0;
bool bFoundVariable = false;
for (const table::CellAddress& rVariableCell : maVariables)
{
if (aLeftCellAddress == rVariableCell)
{
bFoundVariable = true;
table::CellAddress aCellAddress;
double fValue;
if (rConstraint.Right >>= aCellAddress)
{
uno::Reference<table::XCell> xCell = getCell(aCellAddress);
if (xCell->getType() == table::CellContentType_VALUE)
{
maBounds[index].updateBound(eOp, xCell->getValue());
}
else
{
maNonBoundedConstraints.push_back(rConstraint);
}
}
else if (rConstraint.Right >>= fValue)
{
maBounds[index].updateBound(eOp, fValue);
}
}
index++;
}
if (!bFoundVariable)
maNonBoundedConstraints.push_back(rConstraint);
}
std::vector<double> aSolution;
if (mnAlgorithm == 0)
{
DifferentialEvolutionAlgorithm<SwarmSolver> aDE(*this, 50);
SwarmRunner<DifferentialEvolutionAlgorithm<SwarmSolver>> aEvolution(aDE);
aEvolution.setTimeout(mnTimeout);
aSolution = aEvolution.solve();
}
else
{
ParticleSwarmOptimizationAlgorithm<SwarmSolver> aPSO(*this, 100);
SwarmRunner<ParticleSwarmOptimizationAlgorithm<SwarmSolver>> aSwarmSolver(aPSO);
aSwarmSolver.setTimeout(mnTimeout);
aSolution = aSwarmSolver.solve();
}
xModel->unlockControllers();
mbSuccess = true;
maSolution.realloc(aSolution.size());
std::copy(aSolution.begin(), aSolution.end(), maSolution.getArray());
}
extern "C" SAL_DLLPUBLIC_EXPORT uno::XInterface*
com_sun_star_comp_Calc_SwarmSolver_get_implementation(uno::XComponentContext*,
uno::Sequence<uno::Any> const&)
{
return cppu::acquire(new SwarmSolver());
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V614 Uninitialized variable 'fValue' used. Consider checking the second actual argument of the 'updateBound' function.