/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <algorithm>
#include <tools/debug.hxx>
#include <tools/poly.hxx>
#include <tools/helpers.hxx>
#include <tools/gen.hxx>
#include <svx/xpoly.hxx>
#include <xpolyimp.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/range/b2drange.hxx>
ImpXPolygon::ImpXPolygon(sal_uInt16 nInitSize, sal_uInt16 _nResize)
: pOldPointAry(nullptr)
, bDeleteOldPoints(false)
, nSize(0)
, nResize(_nResize)
, nPoints(0)
{
Resize(nInitSize);
}
ImpXPolygon::ImpXPolygon( const ImpXPolygon& rImpXPoly )
: pOldPointAry(nullptr)
, bDeleteOldPoints(false)
, nSize(0)
, nResize(rImpXPoly.nResize)
, nPoints(0)
{
rImpXPoly.CheckPointDelete();
Resize( rImpXPoly.nSize );
// copy
nPoints = rImpXPoly.nPoints;
memcpy( pPointAry.get(), rImpXPoly.pPointAry.get(), nSize*sizeof( Point ) );
memcpy( pFlagAry.get(), rImpXPoly.pFlagAry.get(), nSize );
}
ImpXPolygon::~ImpXPolygon()
{
pPointAry.reset();
if ( bDeleteOldPoints )
{
delete[] pOldPointAry;
pOldPointAry = nullptr;
}
}
bool ImpXPolygon::operator==(const ImpXPolygon& rImpXPoly) const
{
return nPoints==rImpXPoly.nPoints &&
(nPoints==0 ||
(memcmp(pPointAry.get(), rImpXPoly.pPointAry.get(), nPoints*sizeof(Point))==0 &&
memcmp(pFlagAry.get(), rImpXPoly.pFlagAry.get(), nPoints)==0));
}
/** Change polygon size
*
* @param nNewSize the new size of the polygon
* @param bDeletePoints if FALSE, do not delete the point array directly but
* wait for the next call before doing so. This prevents
* errors with XPoly[n] = XPoly[0] where a resize might
* destroy the right side point array too early.
*/
void ImpXPolygon::Resize( sal_uInt16 nNewSize, bool bDeletePoints )
{
if( nNewSize == nSize )
return;
PolyFlags* pOldFlagAry = pFlagAry.release();
sal_uInt16 nOldSize = nSize;
CheckPointDelete();
pOldPointAry = pPointAry.release();
// Round the new size to a multiple of nResize, if
// the object was not newly created (nSize != 0)
if ( nSize != 0 && nNewSize > nSize )
{
DBG_ASSERT(nResize, "Trying to resize but nResize = 0 !");
nNewSize = nSize + ((nNewSize-nSize-1) / nResize + 1) * nResize;
}
// create point array
nSize = nNewSize;
pPointAry.reset( new Point[ nSize ] );
// create flag array
pFlagAry.reset( new PolyFlags[ nSize ] );
memset( pFlagAry.get(), 0, nSize );
// copy if needed
if (nOldSize)
{
if( nOldSize < nSize )
{
memcpy( pPointAry.get(), pOldPointAry, nOldSize*sizeof( Point ) );
memcpy( pFlagAry.get(), pOldFlagAry, nOldSize );
}
else
{
memcpy( pPointAry.get(), pOldPointAry, nSize*sizeof( Point ) );
memcpy( pFlagAry.get(), pOldFlagAry, nSize );
// adjust number of valid points
if( nPoints > nSize )
nPoints = nSize;
}
}
if ( bDeletePoints )
{
delete[] pOldPointAry;
pOldPointAry = nullptr;
}
else
bDeleteOldPoints = true;
delete[] pOldFlagAry;
}
void ImpXPolygon::InsertSpace( sal_uInt16 nPos, sal_uInt16 nCount )
{
CheckPointDelete();
if ( nPos > nPoints )
nPos = nPoints;
// if the polygon is too small then enlarge it
if( (nPoints + nCount) > nSize )
Resize( nPoints + nCount );
// If the insert is not at the last position, move everything after backwards
if( nPos < nPoints )
{
sal_uInt16 nMove = nPoints - nPos;
memmove( &pPointAry[nPos+nCount], &pPointAry[nPos],
nMove * sizeof(Point) );
memmove( &pFlagAry[nPos+nCount], &pFlagAry[nPos], nMove );
}
std::fill(pPointAry.get() + nPos, pPointAry.get() + nPos + nCount, Point());
memset( &pFlagAry [nPos], 0, nCount );
nPoints = nPoints + nCount;
}
void ImpXPolygon::Remove( sal_uInt16 nPos, sal_uInt16 nCount )
{
CheckPointDelete();
if( (nPos + nCount) > nPoints )
return;
sal_uInt16 nMove = nPoints - nPos - nCount;
if( nMove )
{
memmove( &pPointAry[nPos], &pPointAry[nPos+nCount],
nMove * sizeof(Point) );
memmove( &pFlagAry[nPos], &pFlagAry[nPos+nCount], nMove );
}
std::fill(pPointAry.get() + (nPoints - nCount), pPointAry.get() + nPoints, Point());
memset( &pFlagAry [nPoints - nCount], 0, nCount );
nPoints = nPoints - nCount;
}
void ImpXPolygon::CheckPointDelete() const
{
if ( bDeleteOldPoints )
{
delete[] pOldPointAry;
const_cast< ImpXPolygon* >(this)->pOldPointAry = nullptr;
const_cast< ImpXPolygon* >(this)->bDeleteOldPoints = false;
}
}
XPolygon::XPolygon( sal_uInt16 nSize )
: m_pImpXPolygon( ImpXPolygon( nSize, 16 ) )
{
}
XPolygon::XPolygon( const XPolygon& ) = default;
XPolygon::XPolygon( XPolygon&& ) = default;
/// create a XPolygon out of a standard polygon
XPolygon::XPolygon( const tools::Polygon& rPoly )
: m_pImpXPolygon( rPoly.GetSize() )
{
sal_uInt16 nSize = rPoly.GetSize();
m_pImpXPolygon->nPoints = nSize;
for( sal_uInt16 i = 0; i < nSize; i++ )
{
m_pImpXPolygon->pPointAry[i] = rPoly[i];
m_pImpXPolygon->pFlagAry[i] = rPoly.GetFlags( i );
}
}
/// create a rectangle (also with rounded corners) as a Bézier polygon
XPolygon::XPolygon(const tools::Rectangle& rRect, tools::Long nRx, tools::Long nRy)
: m_pImpXPolygon( 17 )
{
tools::Long nWh = (rRect.GetWidth() - 1) / 2;
tools::Long nHh = (rRect.GetHeight() - 1) / 2;
if ( nRx > nWh ) nRx = nWh;
if ( nRy > nHh ) nRy = nHh;
// negate Rx => circle clockwise
nRx = -nRx;
// factor for control points of the Bézier curve: 8/3 * (sin(45g) - 0.5)
tools::Long nXHdl = static_cast<tools::Long>(0.552284749 * nRx);
tools::Long nYHdl = static_cast<tools::Long>(0.552284749 * nRy);
sal_uInt16 nPos = 0;
if ( nRx && nRy )
{
Point aCenter;
for (sal_uInt16 nQuad = 0; nQuad < 4; nQuad++)
{
switch ( nQuad )
{
case 0: aCenter = rRect.TopLeft();
aCenter.AdjustX( -nRx );
aCenter.AdjustY(nRy );
break;
case 1: aCenter = rRect.TopRight();
aCenter.AdjustX(nRx );
aCenter.AdjustY(nRy );
break;
case 2: aCenter = rRect.BottomRight();
aCenter.AdjustX(nRx );
aCenter.AdjustY( -nRy );
break;
case 3: aCenter = rRect.BottomLeft();
aCenter.AdjustX( -nRx );
aCenter.AdjustY( -nRy );
break;
}
GenBezArc(aCenter, nRx, nRy, nXHdl, nYHdl, 0_deg100, 9000_deg100, nQuad, nPos);
m_pImpXPolygon->pFlagAry[nPos ] = PolyFlags::Smooth;
m_pImpXPolygon->pFlagAry[nPos+3] = PolyFlags::Smooth;
nPos += 4;
}
}
else
{
m_pImpXPolygon->pPointAry[nPos++] = rRect.TopLeft();
m_pImpXPolygon->pPointAry[nPos++] = rRect.TopRight();
m_pImpXPolygon->pPointAry[nPos++] = rRect.BottomRight();
m_pImpXPolygon->pPointAry[nPos++] = rRect.BottomLeft();
}
m_pImpXPolygon->pPointAry[nPos] = m_pImpXPolygon->pPointAry[0];
m_pImpXPolygon->nPoints = nPos + 1;
}
/// create an ellipse (curve) as Bézier polygon
XPolygon::XPolygon(const Point& rCenter, tools::Long nRx, tools::Long nRy,
Degree100 nStartAngle, Degree100 nEndAngle, bool bClose)
: m_pImpXPolygon( 17 )
{
nStartAngle %= 36000_deg100;
if ( nEndAngle > 36000_deg100 ) nEndAngle %= 36000_deg100;
bool bFull = (nStartAngle == 0_deg100 && nEndAngle == 36000_deg100);
// factor for control points of the Bézier curve: 8/3 * (sin(45g) - 0.5)
tools::Long nXHdl = static_cast<tools::Long>(0.552284749 * nRx);
tools::Long nYHdl = static_cast<tools::Long>(0.552284749 * nRy);
sal_uInt16 nPos = 0;
bool bLoopEnd = false;
do
{
Degree100 nA1, nA2;
sal_uInt16 nQuad = nStartAngle.get() / 9000;
if ( nQuad == 4 ) nQuad = 0;
bLoopEnd = CheckAngles(nStartAngle, nEndAngle, nA1, nA2);
GenBezArc(rCenter, nRx, nRy, nXHdl, nYHdl, nA1, nA2, nQuad, nPos);
nPos += 3;
if ( !bLoopEnd )
m_pImpXPolygon->pFlagAry[nPos] = PolyFlags::Smooth;
} while ( !bLoopEnd );
// if not a full circle then connect edges with center point if necessary
if ( !bFull && bClose )
m_pImpXPolygon->pPointAry[++nPos] = rCenter;
if ( bFull )
{
m_pImpXPolygon->pFlagAry[0 ] = PolyFlags::Smooth;
m_pImpXPolygon->pFlagAry[nPos] = PolyFlags::Smooth;
}
m_pImpXPolygon->nPoints = nPos + 1;
}
XPolygon::~XPolygon() = default;
void XPolygon::SetPointCount( sal_uInt16 nPoints )
{
std::as_const(m_pImpXPolygon)->CheckPointDelete();
if( m_pImpXPolygon->nSize < nPoints )
m_pImpXPolygon->Resize( nPoints );
if ( nPoints < m_pImpXPolygon->nPoints )
{
sal_uInt16 nSize = m_pImpXPolygon->nPoints - nPoints;
std::fill(
m_pImpXPolygon->pPointAry.get() + nPoints, m_pImpXPolygon->pPointAry.get() + nPoints + nSize, Point());
memset( &m_pImpXPolygon->pFlagAry [nPoints], 0, nSize );
}
m_pImpXPolygon->nPoints = nPoints;
}
sal_uInt16 XPolygon::GetSize() const
{
m_pImpXPolygon->CheckPointDelete();
return m_pImpXPolygon->nSize;
}
sal_uInt16 XPolygon::GetPointCount() const
{
m_pImpXPolygon->CheckPointDelete();
return m_pImpXPolygon->nPoints;
}
void XPolygon::Insert( sal_uInt16 nPos, const Point& rPt, PolyFlags eFlags )
{
if (nPos>m_pImpXPolygon->nPoints) nPos=m_pImpXPolygon->nPoints;
m_pImpXPolygon->InsertSpace( nPos, 1 );
m_pImpXPolygon->pPointAry[nPos] = rPt;
m_pImpXPolygon->pFlagAry[nPos] = eFlags;
}
void XPolygon::Insert( sal_uInt16 nPos, const XPolygon& rXPoly )
{
if (nPos>m_pImpXPolygon->nPoints) nPos=m_pImpXPolygon->nPoints;
sal_uInt16 nPoints = rXPoly.GetPointCount();
m_pImpXPolygon->InsertSpace( nPos, nPoints );
memcpy( &(m_pImpXPolygon->pPointAry[nPos]),
rXPoly.m_pImpXPolygon->pPointAry.get(),
nPoints*sizeof( Point ) );
memcpy( &(m_pImpXPolygon->pFlagAry[nPos]),
rXPoly.m_pImpXPolygon->pFlagAry.get(),
nPoints );
}
void XPolygon::Remove( sal_uInt16 nPos, sal_uInt16 nCount )
{
m_pImpXPolygon->Remove( nPos, nCount );
}
void XPolygon::Move( tools::Long nHorzMove, tools::Long nVertMove )
{
if ( !nHorzMove && !nVertMove )
return;
// move points
sal_uInt16 nCount = m_pImpXPolygon->nPoints;
for ( sal_uInt16 i = 0; i < nCount; i++ )
{
Point* pPt = &(m_pImpXPolygon->pPointAry[i]);
pPt->AdjustX( nHorzMove );
pPt->AdjustY( nVertMove );
}
}
tools::Rectangle XPolygon::GetBoundRect() const
{
m_pImpXPolygon->CheckPointDelete();
tools::Rectangle aRetval;
if(m_pImpXPolygon->nPoints)
{
// #i37709#
// For historical reasons the control points are not part of the
// BoundRect. This makes it necessary to subdivide the polygon to
// get a relatively correct BoundRect. Numerically, this is not
// correct and never was.
const basegfx::B2DRange aPolygonRange(basegfx::utils::getRange(getB2DPolygon()));
aRetval = tools::Rectangle(basegfx::fround<tools::Long>(aPolygonRange.getMinX()),
basegfx::fround<tools::Long>(aPolygonRange.getMinY()),
basegfx::fround<tools::Long>(aPolygonRange.getMaxX()),
basegfx::fround<tools::Long>(aPolygonRange.getMaxY()));
}
return aRetval;
}
const Point& XPolygon::operator[]( sal_uInt16 nPos ) const
{
DBG_ASSERT(nPos < m_pImpXPolygon->nPoints, "Invalid index at const array access to XPolygon");
m_pImpXPolygon->CheckPointDelete();
return m_pImpXPolygon->pPointAry[nPos];
}
Point& XPolygon::operator[]( sal_uInt16 nPos )
{
std::as_const(m_pImpXPolygon)->CheckPointDelete();
if( nPos >= m_pImpXPolygon->nSize )
{
DBG_ASSERT(m_pImpXPolygon->nResize, "Invalid index at array access to XPolygon");
m_pImpXPolygon->Resize(nPos + 1, false);
}
if( nPos >= m_pImpXPolygon->nPoints )
m_pImpXPolygon->nPoints = nPos + 1;
return m_pImpXPolygon->pPointAry[nPos];
}
XPolygon& XPolygon::operator=( const XPolygon& ) = default;
XPolygon& XPolygon::operator=( XPolygon&& ) = default;
bool XPolygon::operator==( const XPolygon& rXPoly ) const
{
m_pImpXPolygon->CheckPointDelete();
return rXPoly.m_pImpXPolygon == m_pImpXPolygon;
}
/// get the flags for the point at the given position
PolyFlags XPolygon::GetFlags( sal_uInt16 nPos ) const
{
m_pImpXPolygon->CheckPointDelete();
return m_pImpXPolygon->pFlagAry[nPos];
}
/// set the flags for the point at the given position
void XPolygon::SetFlags( sal_uInt16 nPos, PolyFlags eFlags )
{
std::as_const(m_pImpXPolygon)->CheckPointDelete();
m_pImpXPolygon->pFlagAry[nPos] = eFlags;
}
/// short path to read the CONTROL flag directly (TODO: better explain what the sense behind this flag is!)
bool XPolygon::IsControl(sal_uInt16 nPos) const
{
return m_pImpXPolygon->pFlagAry[nPos] == PolyFlags::Control;
}
/// short path to read the SMOOTH and SYMMTR flag directly (TODO: better explain what the sense behind these flags is!)
bool XPolygon::IsSmooth(sal_uInt16 nPos) const
{
PolyFlags eFlag = m_pImpXPolygon->pFlagAry[nPos];
return ( eFlag == PolyFlags::Smooth || eFlag == PolyFlags::Symmetric );
}
/** calculate the euclidean distance between two points
*
* @param nP1 The first point
* @param nP2 The second point
*/
double XPolygon::CalcDistance(sal_uInt16 nP1, sal_uInt16 nP2)
{
const Point& rP1 = m_pImpXPolygon->pPointAry[nP1];
const Point& rP2 = m_pImpXPolygon->pPointAry[nP2];
double fDx = rP2.X() - rP1.X();
double fDy = rP2.Y() - rP1.Y();
return std::hypot(fDx, fDy);
}
void XPolygon::SubdivideBezier(sal_uInt16 nPos, bool bCalcFirst, double fT)
{
Point* pPoints = m_pImpXPolygon->pPointAry.get();
double fT2 = fT * fT;
double fT3 = fT * fT2;
double fU = 1.0 - fT;
double fU2 = fU * fU;
double fU3 = fU * fU2;
sal_uInt16 nIdx = nPos;
short nPosInc, nIdxInc;
if ( bCalcFirst )
{
nPos += 3;
nPosInc = -1;
nIdxInc = 0;
}
else
{
nPosInc = 1;
nIdxInc = 1;
}
pPoints[nPos].setX( static_cast<tools::Long>(fU3 * pPoints[nIdx ].X() +
fT * fU2 * pPoints[nIdx+1].X() * 3 +
fT2 * fU * pPoints[nIdx+2].X() * 3 +
fT3 * pPoints[nIdx+3].X()) );
pPoints[nPos].setY( static_cast<tools::Long>(fU3 * pPoints[nIdx ].Y() +
fT * fU2 * pPoints[nIdx+1].Y() * 3 +
fT2 * fU * pPoints[nIdx+2].Y() * 3 +
fT3 * pPoints[nIdx+3].Y()) );
nPos = nPos + nPosInc;
nIdx = nIdx + nIdxInc;
pPoints[nPos].setX( static_cast<tools::Long>(fU2 * pPoints[nIdx ].X() +
fT * fU * pPoints[nIdx+1].X() * 2 +
fT2 * pPoints[nIdx+2].X()) );
pPoints[nPos].setY( static_cast<tools::Long>(fU2 * pPoints[nIdx ].Y() +
fT * fU * pPoints[nIdx+1].Y() * 2 +
fT2 * pPoints[nIdx+2].Y()) );
nPos = nPos + nPosInc;
nIdx = nIdx + nIdxInc;
pPoints[nPos].setX( static_cast<tools::Long>(fU * pPoints[nIdx ].X() +
fT * pPoints[nIdx+1].X()) );
pPoints[nPos].setY( static_cast<tools::Long>(fU * pPoints[nIdx ].Y() +
fT * pPoints[nIdx+1].Y()) );
}
/// Generate a Bézier arc
void XPolygon::GenBezArc(const Point& rCenter, tools::Long nRx, tools::Long nRy,
tools::Long nXHdl, tools::Long nYHdl, Degree100 nStart, Degree100 nEnd,
sal_uInt16 nQuad, sal_uInt16 nFirst)
{
Point* pPoints = m_pImpXPolygon->pPointAry.get();
pPoints[nFirst ] = rCenter;
pPoints[nFirst+3] = rCenter;
if ( nQuad == 1 || nQuad == 2 )
{
nRx = -nRx; nXHdl = -nXHdl;
}
if ( nQuad == 0 || nQuad == 1 )
{
nRy = -nRy; nYHdl = -nYHdl;
}
if ( nQuad == 0 || nQuad == 2 )
{
pPoints[nFirst].AdjustX( nRx );
pPoints[nFirst+3].AdjustY( nRy );
}
else
{
pPoints[nFirst].AdjustY( nRy );
pPoints[nFirst+3].AdjustX( nRx );
}
pPoints[nFirst+1] = pPoints[nFirst];
pPoints[nFirst+2] = pPoints[nFirst+3];
if ( nQuad == 0 || nQuad == 2 )
{
pPoints[nFirst+1].AdjustY( nYHdl );
pPoints[nFirst+2].AdjustX( nXHdl );
}
else
{
pPoints[nFirst+1].AdjustX( nXHdl );
pPoints[nFirst+2].AdjustY( nYHdl );
}
if ( nStart > 0_deg100 )
SubdivideBezier(nFirst, false, static_cast<double>(nStart.get()) / 9000);
if ( nEnd < 9000_deg100 )
SubdivideBezier(nFirst, true, static_cast<double>((nEnd-nStart).get()) / (9000_deg100-nStart).get());
SetFlags(nFirst+1, PolyFlags::Control);
SetFlags(nFirst+2, PolyFlags::Control);
}
bool XPolygon::CheckAngles(Degree100& nStart, Degree100 nEnd, Degree100& nA1, Degree100& nA2)
{
if ( nStart == 36000_deg100 ) nStart = 0_deg100;
if ( nEnd == 0_deg100 ) nEnd = 36000_deg100;
Degree100 nStPrev = nStart;
Degree100 nMax((nStart.get() / 9000 + 1) * 9000);
Degree100 nMin = nMax - 9000_deg100;
if ( nEnd >= nMax || nEnd <= nStart ) nA2 = 9000_deg100;
else nA2 = nEnd - nMin;
nA1 = nStart - nMin;
nStart = nMax;
// returns true when the last segment was calculated
return (nStPrev < nEnd && nStart >= nEnd);
}
/** Calculate a smooth transition to connect two Bézier curves
*
* This is done by projecting the corresponding point onto a line between
* two other points.
*
* @param nCenter The point at the end or beginning of the curve.
* If nCenter is at the end of the polygon the point is moved
* to the opposite side.
* @param nDrag The moved point that specifies the relocation.
* @param nPnt The point to modify.
*/
void XPolygon::CalcSmoothJoin(sal_uInt16 nCenter, sal_uInt16 nDrag, sal_uInt16 nPnt)
{
// If nPoint is no control point, i.e. cannot be moved, then
// move nDrag instead on the line between nCenter and nPnt
if ( !IsControl(nPnt) )
std::swap( nDrag, nPnt );
Point* pPoints = m_pImpXPolygon->pPointAry.get();
Point aDiff = pPoints[nDrag] - pPoints[nCenter];
double fDiv = CalcDistance(nCenter, nDrag);
if ( fDiv )
{
double fRatio = CalcDistance(nCenter, nPnt) / fDiv;
// keep the length if SMOOTH
if ( GetFlags(nCenter) == PolyFlags::Smooth || !IsControl(nDrag) )
{
aDiff.setX( static_cast<tools::Long>(fRatio * aDiff.X()) );
aDiff.setY( static_cast<tools::Long>(fRatio * aDiff.Y()) );
}
pPoints[nPnt] = pPoints[nCenter] - aDiff;
}
}
/** Calculate tangent between two Bézier curves
*
* @param nCenter start or end point of the curves
* @param nPrev previous reference point
* @param nNext next reference point
*/
void XPolygon::CalcTangent(sal_uInt16 nCenter, sal_uInt16 nPrev, sal_uInt16 nNext)
{
double fAbsLen = CalcDistance(nNext, nPrev);
if ( !fAbsLen )
return;
const Point& rCenter = m_pImpXPolygon->pPointAry[nCenter];
Point& rNext = m_pImpXPolygon->pPointAry[nNext];
Point& rPrev = m_pImpXPolygon->pPointAry[nPrev];
Point aDiff = rNext - rPrev;
double fNextLen = CalcDistance(nCenter, nNext) / fAbsLen;
double fPrevLen = CalcDistance(nCenter, nPrev) / fAbsLen;
// same length for both sides if SYMMTR
if ( GetFlags(nCenter) == PolyFlags::Symmetric )
{
fPrevLen = (fNextLen + fPrevLen) / 2;
fNextLen = fPrevLen;
}
rNext.setX( rCenter.X() + static_cast<tools::Long>(fNextLen * aDiff.X()) );
rNext.setY( rCenter.Y() + static_cast<tools::Long>(fNextLen * aDiff.Y()) );
rPrev.setX( rCenter.X() - static_cast<tools::Long>(fPrevLen * aDiff.X()) );
rPrev.setY( rCenter.Y() - static_cast<tools::Long>(fPrevLen * aDiff.Y()) );
}
/// convert four polygon points into a Bézier curve
void XPolygon::PointsToBezier(sal_uInt16 nFirst)
{
double nFullLength, nPart1Length, nPart2Length;
double fX0, fY0, fX1, fY1, fX2, fY2, fX3, fY3;
double fTx1, fTx2, fTy1, fTy2;
double fT1, fU1, fT2, fU2, fV;
Point* pPoints = m_pImpXPolygon->pPointAry.get();
if ( nFirst > m_pImpXPolygon->nPoints - 4 || IsControl(nFirst) ||
IsControl(nFirst+1) || IsControl(nFirst+2) || IsControl(nFirst+3) )
return;
fTx1 = pPoints[nFirst+1].X();
fTy1 = pPoints[nFirst+1].Y();
fTx2 = pPoints[nFirst+2].X();
fTy2 = pPoints[nFirst+2].Y();
fX0 = pPoints[nFirst ].X();
fY0 = pPoints[nFirst ].Y();
fX3 = pPoints[nFirst+3].X();
fY3 = pPoints[nFirst+3].Y();
nPart1Length = CalcDistance(nFirst, nFirst+1);
nPart2Length = nPart1Length + CalcDistance(nFirst+1, nFirst+2);
nFullLength = nPart2Length + CalcDistance(nFirst+2, nFirst+3);
if ( nFullLength < 20 )
return;
if ( nPart2Length == nFullLength )
nPart2Length -= 1;
if ( nPart1Length == nFullLength )
nPart1Length = nPart2Length - 1;
if ( nPart1Length <= 0 )
nPart1Length = 1;
if ( nPart2Length <= 0 || nPart2Length == nPart1Length )
nPart2Length = nPart1Length + 1;
fT1 = nPart1Length / nFullLength;
fU1 = 1.0 - fT1;
fT2 = nPart2Length / nFullLength;
fU2 = 1.0 - fT2;
fV = 3 * (1.0 - (fT1 * fU2) / (fT2 * fU1));
fX1 = fTx1 / (fT1 * fU1 * fU1) - fTx2 * fT1 / (fT2 * fT2 * fU1 * fU2);
fX1 /= fV;
fX1 -= fX0 * ( fU1 / fT1 + fU2 / fT2) / 3;
fX1 += fX3 * ( fT1 * fT2 / (fU1 * fU2)) / 3;
fY1 = fTy1 / (fT1 * fU1 * fU1) - fTy2 * fT1 / (fT2 * fT2 * fU1 * fU2);
fY1 /= fV;
fY1 -= fY0 * ( fU1 / fT1 + fU2 / fT2) / 3;
fY1 += fY3 * ( fT1 * fT2 / (fU1 * fU2)) / 3;
fX2 = fTx2 / (fT2 * fT2 * fU2 * 3) - fX0 * fU2 * fU2 / ( fT2 * fT2 * 3);
fX2 -= fX1 * fU2 / fT2;
fX2 -= fX3 * fT2 / (fU2 * 3);
fY2 = fTy2 / (fT2 * fT2 * fU2 * 3) - fY0 * fU2 * fU2 / ( fT2 * fT2 * 3);
fY2 -= fY1 * fU2 / fT2;
fY2 -= fY3 * fT2 / (fU2 * 3);
pPoints[nFirst+1] = Point(static_cast<tools::Long>(fX1), static_cast<tools::Long>(fY1));
pPoints[nFirst+2] = Point(static_cast<tools::Long>(fX2), static_cast<tools::Long>(fY2));
SetFlags(nFirst+1, PolyFlags::Control);
SetFlags(nFirst+2, PolyFlags::Control);
}
/// scale in X- and/or Y-direction
void XPolygon::Scale(double fSx, double fSy)
{
std::as_const(m_pImpXPolygon)->CheckPointDelete();
sal_uInt16 nPntCnt = m_pImpXPolygon->nPoints;
for (sal_uInt16 i = 0; i < nPntCnt; i++)
{
Point& rPnt = m_pImpXPolygon->pPointAry[i];
rPnt.setX( static_cast<tools::Long>(fSx * rPnt.X()) );
rPnt.setY( static_cast<tools::Long>(fSy * rPnt.Y()) );
}
}
/**
* Distort a polygon by scaling its coordinates relative to a reference
* rectangle into an arbitrary rectangle.
*
* Mapping between polygon corners and reference rectangle:
* 0: top left 0----1
* 1: top right | |
* 2: bottom right 3----2
* 3: bottom left
*/
void XPolygon::Distort(const tools::Rectangle& rRefRect,
const XPolygon& rDistortedRect)
{
std::as_const(m_pImpXPolygon)->CheckPointDelete();
tools::Long Xr, Wr;
tools::Long Yr, Hr;
Xr = rRefRect.Left();
Yr = rRefRect.Top();
Wr = rRefRect.GetWidth();
Hr = rRefRect.GetHeight();
if ( !Wr || !Hr )
return;
tools::Long X1, X2, X3, X4;
tools::Long Y1, Y2, Y3, Y4;
DBG_ASSERT(rDistortedRect.m_pImpXPolygon->nPoints >= 4,
"Distort: rectangle too small");
X1 = rDistortedRect[0].X();
Y1 = rDistortedRect[0].Y();
X2 = rDistortedRect[1].X();
Y2 = rDistortedRect[1].Y();
X3 = rDistortedRect[3].X();
Y3 = rDistortedRect[3].Y();
X4 = rDistortedRect[2].X();
Y4 = rDistortedRect[2].Y();
sal_uInt16 nPntCnt = m_pImpXPolygon->nPoints;
for (sal_uInt16 i = 0; i < nPntCnt; i++)
{
double fTx, fTy, fUx, fUy;
Point& rPnt = m_pImpXPolygon->pPointAry[i];
fTx = static_cast<double>(rPnt.X() - Xr) / Wr;
fTy = static_cast<double>(rPnt.Y() - Yr) / Hr;
fUx = 1.0 - fTx;
fUy = 1.0 - fTy;
rPnt.setX( static_cast<tools::Long>( fUy * (fUx * X1 + fTx * X2) +
fTy * (fUx * X3 + fTx * X4) ) );
rPnt.setY( static_cast<tools::Long>( fUx * (fUy * Y1 + fTy * Y3) +
fTx * (fUy * Y2 + fTy * Y4) ) );
}
}
basegfx::B2DPolygon XPolygon::getB2DPolygon() const
{
// #i74631# use tools Polygon class for conversion to not have the code doubled
// here. This needs one more conversion but avoids different converters in
// the long run
const tools::Polygon aSource(GetPointCount(), m_pImpXPolygon->pPointAry.get(), m_pImpXPolygon->pFlagAry.get());
return aSource.getB2DPolygon();
}
XPolygon::XPolygon(const basegfx::B2DPolygon& rPolygon)
: m_pImpXPolygon( tools::Polygon( rPolygon ).GetSize() )
{
// #i74631# use tools Polygon class for conversion to not have the code doubled
// here. This needs one more conversion but avoids different converters in
// the long run
const tools::Polygon aSource(rPolygon);
sal_uInt16 nSize = aSource.GetSize();
m_pImpXPolygon->nPoints = nSize;
for( sal_uInt16 i = 0; i < nSize; i++ )
{
m_pImpXPolygon->pPointAry[i] = aSource[i];
m_pImpXPolygon->pFlagAry[i] = aSource.GetFlags( i );
}
}
// XPolyPolygon
XPolyPolygon::XPolyPolygon() = default;
XPolyPolygon::XPolyPolygon( const XPolyPolygon& ) = default;
XPolyPolygon::XPolyPolygon( XPolyPolygon&& ) = default;
XPolyPolygon::XPolyPolygon(const basegfx::B2DPolyPolygon& rPolyPolygon)
{
for(auto const& rCandidate : rPolyPolygon)
{
Insert(XPolygon(rCandidate));
}
}
XPolyPolygon::~XPolyPolygon() = default;
void XPolyPolygon::Insert( XPolygon&& rXPoly )
{
m_pImpXPolyPolygon->aXPolyList.emplace_back( std::move(rXPoly) );
}
/// insert all XPolygons of a XPolyPolygon
void XPolyPolygon::Insert( const XPolyPolygon& rXPolyPoly )
{
for ( size_t i = 0; i < rXPolyPoly.Count(); i++)
{
m_pImpXPolyPolygon->aXPolyList.emplace_back( rXPolyPoly[i] );
}
}
void XPolyPolygon::Remove( sal_uInt16 nPos )
{
m_pImpXPolyPolygon->aXPolyList.erase( m_pImpXPolyPolygon->aXPolyList.begin() + nPos );
}
const XPolygon& XPolyPolygon::GetObject( sal_uInt16 nPos ) const
{
return m_pImpXPolyPolygon->aXPolyList[ nPos ];
}
void XPolyPolygon::Clear()
{
m_pImpXPolyPolygon->aXPolyList.clear();
}
sal_uInt16 XPolyPolygon::Count() const
{
return static_cast<sal_uInt16>(m_pImpXPolyPolygon->aXPolyList.size());
}
tools::Rectangle XPolyPolygon::GetBoundRect() const
{
size_t nXPoly = m_pImpXPolyPolygon->aXPolyList.size();
tools::Rectangle aRect;
for ( size_t n = 0; n < nXPoly; n++ )
{
XPolygon const & rXPoly = m_pImpXPolyPolygon->aXPolyList[ n ];
aRect.Union( rXPoly.GetBoundRect() );
}
return aRect;
}
XPolygon& XPolyPolygon::operator[]( sal_uInt16 nPos )
{
return m_pImpXPolyPolygon->aXPolyList[ nPos ];
}
XPolyPolygon& XPolyPolygon::operator=( const XPolyPolygon& ) = default;
XPolyPolygon& XPolyPolygon::operator=( XPolyPolygon&& ) = default;
/**
* Distort a polygon by scaling its coordinates relative to a reference
* rectangle into an arbitrary rectangle.
*
* Mapping between polygon corners and reference rectangle:
* 0: top left 0----1
* 1: top right | |
* 2: bottom right 3----2
* 3: bottom left
*/
void XPolyPolygon::Distort(const tools::Rectangle& rRefRect,
const XPolygon& rDistortedRect)
{
for (size_t i = 0; i < Count(); i++)
m_pImpXPolyPolygon->aXPolyList[ i ].Distort(rRefRect, rDistortedRect);
}
basegfx::B2DPolyPolygon XPolyPolygon::getB2DPolyPolygon() const
{
basegfx::B2DPolyPolygon aRetval;
for(sal_uInt16 a(0); a < Count(); a++)
{
const XPolygon& rPoly = (*this)[a];
aRetval.append(rPoly.getB2DPolygon());
}
return aRetval;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'Union' is required to be utilized.
↑ V575 The 'memcpy' function processes '0' elements. Inspect the third argument.
↑ V575 The 'memcpy' function processes '0' elements. Inspect the third argument.