/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <rtl/ustring.hxx>
#include <sal/log.hxx>
#include <rtl/math.hxx>
#include <rtl/character.hxx>
#include <stringconversiontools.hxx>
namespace
{
void putCommandChar(OUStringBuffer& rBuffer,sal_Unicode& rLastSVGCommand, sal_Unicode aChar, bool bToLower,bool bVerbose)
{
const sal_Unicode aCommand = bToLower ? rtl::toAsciiLowerCase(aChar) : aChar;
if (bVerbose && rBuffer.getLength())
rBuffer.append(' ');
if (bVerbose || rLastSVGCommand != aCommand)
{
rBuffer.append(aCommand);
rLastSVGCommand = aCommand;
}
}
void putNumberChar(OUStringBuffer& rStr,double fValue, double fOldValue, bool bUseRelativeCoordinates,bool bVerbose)
{
if (bUseRelativeCoordinates)
fValue -= fOldValue;
const sal_Int32 aLen(rStr.getLength());
if (bVerbose || (aLen && basegfx::internal::isOnNumberChar(rStr[aLen - 1], false) && fValue >= 0.0))
rStr.append(' ');
rStr.append(fValue);
}
}
namespace basegfx::utils
{
bool PointIndex::operator<(const PointIndex& rComp) const
{
if(rComp.getPolygonIndex() == getPolygonIndex())
{
return rComp.getPointIndex() < getPointIndex();
}
return rComp.getPolygonIndex() < getPolygonIndex();
}
bool importFromSvgD(
B2DPolyPolygon& o_rPolyPolygon,
std::u16string_view rSvgDStatement,
bool bHandleRelativeNextPointCompatible,
PointIndexSet* pHelpPointIndexSet)
{
o_rPolyPolygon.clear();
const sal_Int32 nLen(rSvgDStatement.size());
sal_Int32 nPos(0);
double nLastX( 0.0 );
double nLastY( 0.0 );
B2DPolygon aCurrPoly;
// skip initial whitespace
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen)
{
bool bRelative(false);
const sal_Unicode aCurrChar(rSvgDStatement[nPos]);
if(o_rPolyPolygon.count() && !aCurrPoly.count() && aCurrChar != 'm' && aCurrChar != 'M')
{
// we have a new sub-polygon starting, but without a 'moveto' command.
// this requires to add the current point as start point to the polygon
// (see SVG1.1 8.3.3 The "closepath" command)
aCurrPoly.append(B2DPoint(nLastX, nLastY));
}
switch(aCurrChar)
{
case 'z' :
case 'Z' :
{
// consume CurrChar and whitespace
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
// create closed polygon and reset import values
if(aCurrPoly.count())
{
if(!bHandleRelativeNextPointCompatible)
{
// SVG defines that "the next subpath starts at the
// same initial point as the current subpath", so set the
// current point if we do not need to be compatible
nLastX = aCurrPoly.getB2DPoint(0).getX();
nLastY = aCurrPoly.getB2DPoint(0).getY();
}
aCurrPoly.setClosed(true);
o_rPolyPolygon.append(aCurrPoly);
aCurrPoly.clear();
}
break;
}
case 'm' :
case 'M' :
{
// create non-closed polygon and reset import values
if(aCurrPoly.count())
{
o_rPolyPolygon.append(aCurrPoly);
aCurrPoly.clear();
}
[[fallthrough]]; // to add coordinate data as 1st point of new polygon
}
case 'l' :
case 'L' :
{
if(aCurrChar == 'm' || aCurrChar == 'l')
{
bRelative = true;
}
// consume CurrChar and whitespace
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY;
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX += nLastX;
nY += nLastY;
}
// set last position
nLastX = nX;
nLastY = nY;
// add point
aCurrPoly.append(B2DPoint(nX, nY));
}
break;
}
case 'h' :
{
bRelative = true;
[[fallthrough]];
}
case 'H' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY(nLastY);
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX += nLastX;
}
// set last position
nLastX = nX;
// add point
aCurrPoly.append(B2DPoint(nX, nY));
}
break;
}
case 'v' :
{
bRelative = true;
[[fallthrough]];
}
case 'V' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX(nLastX), nY;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nY += nLastY;
}
// set last position
nLastY = nY;
// add point
aCurrPoly.append(B2DPoint(nX, nY));
}
break;
}
case 's' :
{
bRelative = true;
[[fallthrough]];
}
case 'S' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY;
double nX2, nY2;
if(!basegfx::internal::importDoubleAndSpaces(nX2, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY2, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX2 += nLastX;
nY2 += nLastY;
nX += nLastX;
nY += nLastY;
}
// ensure existence of start point
sal_uInt32 nCurrPolyCount = aCurrPoly.count();
if (nCurrPolyCount == 0)
{
aCurrPoly.append(B2DPoint(nLastX, nLastY));
nCurrPolyCount = 1;
}
assert(nCurrPolyCount > 0 && "coverity 2023.12.2");
// get first control point. It's the reflection of the PrevControlPoint
// of the last point. If not existent, use current point (see SVG)
B2DPoint aPrevControl(nLastX, nLastY);
const sal_uInt32 nIndex(nCurrPolyCount - 1);
if(aCurrPoly.areControlPointsUsed() && aCurrPoly.isPrevControlPointUsed(nIndex))
{
const B2DPoint aPrevPoint(aCurrPoly.getB2DPoint(nIndex));
const B2DPoint aPrevControlPoint(aCurrPoly.getPrevControlPoint(nIndex));
// use mirrored previous control point
aPrevControl.setX((2.0 * aPrevPoint.getX()) - aPrevControlPoint.getX());
aPrevControl.setY((2.0 * aPrevPoint.getY()) - aPrevControlPoint.getY());
}
// append curved edge
aCurrPoly.appendBezierSegment(aPrevControl, B2DPoint(nX2, nY2), B2DPoint(nX, nY));
// set last position
nLastX = nX;
nLastY = nY;
}
break;
}
case 'c' :
{
bRelative = true;
[[fallthrough]];
}
case 'C' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY;
double nX1, nY1;
double nX2, nY2;
if(!basegfx::internal::importDoubleAndSpaces(nX1, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY1, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nX2, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY2, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX1 += nLastX;
nY1 += nLastY;
nX2 += nLastX;
nY2 += nLastY;
nX += nLastX;
nY += nLastY;
}
// ensure existence of start point
if(!aCurrPoly.count())
{
aCurrPoly.append(B2DPoint(nLastX, nLastY));
}
// append curved edge
aCurrPoly.appendBezierSegment(B2DPoint(nX1, nY1), B2DPoint(nX2, nY2), B2DPoint(nX, nY));
// set last position
nLastX = nX;
nLastY = nY;
}
break;
}
// #100617# quadratic beziers are imported as cubic ones
case 'q' :
{
bRelative = true;
[[fallthrough]];
}
case 'Q' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY;
double nX1, nY1;
if(!basegfx::internal::importDoubleAndSpaces(nX1, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY1, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX1 += nLastX;
nY1 += nLastY;
nX += nLastX;
nY += nLastY;
}
// ensure existence of start point
if(!aCurrPoly.count())
{
aCurrPoly.append(B2DPoint(nLastX, nLastY));
}
// append curved edge
aCurrPoly.appendQuadraticBezierSegment(B2DPoint(nX1, nY1), B2DPoint(nX, nY));
// set last position
nLastX = nX;
nLastY = nY;
}
break;
}
// #100617# relative quadratic beziers are imported as cubic
case 't' :
{
bRelative = true;
[[fallthrough]];
}
case 'T' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY;
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX += nLastX;
nY += nLastY;
}
// ensure existence of start point
sal_uInt32 nCurrPolyCount = aCurrPoly.count();
if (nCurrPolyCount == 0)
{
aCurrPoly.append(B2DPoint(nLastX, nLastY));
nCurrPolyCount = 1;
}
assert(nCurrPolyCount > 0 && "coverity 2023.12.2");
// get first control point. It's the reflection of the PrevControlPoint
// of the last point. If not existent, use current point (see SVG)
B2DPoint aPrevControl(nLastX, nLastY);
const sal_uInt32 nIndex(nCurrPolyCount - 1);
const B2DPoint aPrevPoint(aCurrPoly.getB2DPoint(nIndex));
if(aCurrPoly.areControlPointsUsed() && aCurrPoly.isPrevControlPointUsed(nIndex))
{
const B2DPoint aPrevControlPoint(aCurrPoly.getPrevControlPoint(nIndex));
// use mirrored previous control point
aPrevControl.setX((2.0 * aPrevPoint.getX()) - aPrevControlPoint.getX());
aPrevControl.setY((2.0 * aPrevPoint.getY()) - aPrevControlPoint.getY());
}
if(!aPrevControl.equal(aPrevPoint))
{
// there is a prev control point, and we have the already mirrored one
// in aPrevControl. We also need the quadratic control point for this
// new quadratic segment to calculate the 2nd cubic control point
const B2DPoint aQuadControlPoint(
((3.0 * aPrevControl.getX()) - aPrevPoint.getX()) / 2.0,
((3.0 * aPrevControl.getY()) - aPrevPoint.getY()) / 2.0);
// calculate the cubic bezier coefficients from the quadratic ones.
const double nX2Prime((aQuadControlPoint.getX() * 2.0 + nX) / 3.0);
const double nY2Prime((aQuadControlPoint.getY() * 2.0 + nY) / 3.0);
// append curved edge, use mirrored cubic control point directly
aCurrPoly.appendBezierSegment(aPrevControl, B2DPoint(nX2Prime, nY2Prime), B2DPoint(nX, nY));
}
else
{
// when no previous control, SVG says to use current point -> straight line.
// Just add end point
aCurrPoly.append(B2DPoint(nX, nY));
}
// set last position
nLastX = nX;
nLastY = nY;
}
break;
}
case 'a' :
{
bRelative = true;
[[fallthrough]];
}
case 'A' :
{
nPos++;
basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen);
while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos))
{
double nX, nY;
double fRX, fRY, fPhi;
sal_Int32 bLargeArcFlag, bSweepFlag;
if(!basegfx::internal::importDoubleAndSpaces(fRX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(fRY, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(fPhi, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importFlagAndSpaces(bLargeArcFlag, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importFlagAndSpaces(bSweepFlag, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false;
if(bRelative)
{
nX += nLastX;
nY += nLastY;
}
if( rtl::math::approxEqual(nX, nLastX) && rtl::math::approxEqual(nY, nLastY) )
continue; // start==end -> skip according to SVG spec
if( fRX == 0.0 || fRY == 0.0 )
{
// straight line segment according to SVG spec
aCurrPoly.append(B2DPoint(nX, nY));
}
else
{
// normalize according to SVG spec
fRX=fabs(fRX); fRY=fabs(fRY);
// from the SVG spec, appendix F.6.4
// |x1'| |cos phi sin phi| |(x1 - x2)/2|
// |y1'| = |-sin phi cos phi| |(y1 - y2)/2|
const B2DPoint p1(nLastX, nLastY);
const B2DPoint p2(nX, nY);
B2DHomMatrix aTransform(basegfx::utils::createRotateB2DHomMatrix(
-deg2rad(fPhi)));
const B2DPoint p1_prime( aTransform * B2DPoint(((p1-p2)/2.0)) );
// ______________________________________ rx y1'
// |cx'| + / rx^2 ry^2 - rx^2 y1'^2 - ry^2 x1^2 ry
// |cy'| =-/ rx^2y1'^2 + ry^2 x1'^2 - ry x1'
// rx
// chose + if f_A != f_S
// chose - if f_A = f_S
B2DPoint aCenter_prime;
const double fRadicant(
(fRX*fRX*fRY*fRY - fRX*fRX*p1_prime.getY()*p1_prime.getY() - fRY*fRY*p1_prime.getX()*p1_prime.getX())/
(fRX*fRX*p1_prime.getY()*p1_prime.getY() + fRY*fRY*p1_prime.getX()*p1_prime.getX()));
if( fRadicant < 0.0 )
{
// no solution - according to SVG
// spec, scale up ellipse
// uniformly such that it passes
// through end points (denominator
// of radicant solved for fRY,
// with s=fRX/fRY)
const double fRatio(fRX/fRY);
fRY=std::hypot(p1_prime.getY(), p1_prime.getX()/fRatio);
fRX=fRatio*fRY;
// keep center_prime forced to (0,0)
}
else
{
const double fFactor(
(bLargeArcFlag==bSweepFlag ? -1.0 : 1.0) *
sqrt(fRadicant));
// actually calculate center_prime
aCenter_prime = B2DPoint(
fFactor*fRX*p1_prime.getY()/fRY,
-fFactor*fRY*p1_prime.getX()/fRX);
}
// + u - v
// angle(u,v) = arccos( ------------ ) (take the sign of (ux vy - uy vx))
// - ||u|| ||v||
// 1 | (x1' - cx')/rx |
// theta1 = angle(( ), | | )
// 0 | (y1' - cy')/ry |
const B2DPoint aRadii(fRX,fRY);
double fTheta1(
B2DVector(1.0,0.0).angle(
(p1_prime-aCenter_prime)/aRadii));
// |1| | (-x1' - cx')/rx |
// theta2 = angle( | | , | | )
// |0| | (-y1' - cy')/ry |
double fTheta2(
B2DVector(1.0,0.0).angle(
(-p1_prime-aCenter_prime)/aRadii));
// map both angles to [0,2pi)
fTheta1 = fmod(2*M_PI+fTheta1,2*M_PI);
fTheta2 = fmod(2*M_PI+fTheta2,2*M_PI);
// make sure the large arc is taken
// (since
// createPolygonFromEllipseSegment()
// normalizes to e.g. cw arc)
if( !bSweepFlag )
std::swap(fTheta1,fTheta2);
// finally, create bezier polygon from this
B2DPolygon aSegment(
utils::createPolygonFromUnitEllipseSegment(
fTheta1, fTheta2 ));
// transform ellipse by rotation & move to final center
aTransform = basegfx::utils::createScaleB2DHomMatrix(fRX, fRY);
aTransform.translate(aCenter_prime.getX(),
aCenter_prime.getY());
aTransform.rotate(deg2rad(fPhi));
const B2DPoint aOffset((p1+p2)/2.0);
aTransform.translate(aOffset.getX(),
aOffset.getY());
aSegment.transform(aTransform);
// createPolygonFromEllipseSegment()
// always creates arcs that are
// positively oriented - flip polygon
// if we swapped angles above
if( !bSweepFlag )
aSegment.flip();
// remember PointIndex of evtl. added pure helper points
sal_uInt32 nPointIndex(aCurrPoly.count() + 1);
aCurrPoly.append(aSegment);
// if asked for, mark pure helper points by adding them to the index list of
// helper points
if(pHelpPointIndexSet && aCurrPoly.count() > 1)
{
const sal_uInt32 nPolyIndex(o_rPolyPolygon.count());
for(;nPointIndex + 1 < aCurrPoly.count(); nPointIndex++)
{
pHelpPointIndexSet->insert(PointIndex(nPolyIndex, nPointIndex));
}
}
}
// set last position
nLastX = nX;
nLastY = nY;
}
break;
}
default:
{
SAL_WARN("basegfx", "importFromSvgD(): skipping tags in svg:d element (unknown: \""
<< OUString(aCurrChar)
<< "\")!");
++nPos;
break;
}
}
}
// if there is polygon data, create non-closed polygon
if(aCurrPoly.count())
{
o_rPolyPolygon.append(aCurrPoly);
}
return true;
}
bool importFromSvgPoints( B2DPolygon& o_rPoly,
std::u16string_view rSvgPointsAttribute )
{
o_rPoly.clear();
const sal_Int32 nLen(rSvgPointsAttribute.size());
sal_Int32 nPos(0);
double nX, nY;
// skip initial whitespace
basegfx::internal::skipSpaces(nPos, rSvgPointsAttribute, nLen);
while(nPos < nLen)
{
if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgPointsAttribute, nLen)) return false;
if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgPointsAttribute, nLen)) return false;
// add point
o_rPoly.append(B2DPoint(nX, nY));
// skip to next number, or finish
basegfx::internal::skipSpaces(nPos, rSvgPointsAttribute, nLen);
}
return true;
}
OUString exportToSvgPoints( const B2DPolygon& rPoly )
{
SAL_WARN_IF(rPoly.areControlPointsUsed(), "basegfx", "exportToSvgPoints: Only non-bezier polygons allowed (!)");
const sal_uInt32 nPointCount(rPoly.count());
OUStringBuffer aResult;
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const basegfx::B2DPoint aPoint(rPoly.getB2DPoint(a));
if(a)
{
aResult.append(' ');
}
aResult.append(OUString::number(aPoint.getX())
+ ","
+ OUString::number(aPoint.getY()));
}
return aResult.makeStringAndClear();
}
OUString exportToSvgD(
const B2DPolyPolygon& rPolyPolygon,
bool bUseRelativeCoordinates,
bool bDetectQuadraticBeziers,
bool bHandleRelativeNextPointCompatible,
bool bOOXMLMotionPath)
{
const sal_uInt32 nCount(rPolyPolygon.count());
sal_uInt32 nCombinedPointCount = 0;
for(sal_uInt32 i(0); i < nCount; i++)
{
const B2DPolygon& aPolygon(rPolyPolygon.getB2DPolygon(i));
nCombinedPointCount += aPolygon.count();
}
OUStringBuffer aResult(std::max<int>(nCombinedPointCount * 32,512));
B2DPoint aCurrentSVGPosition(0.0, 0.0); // SVG assumes (0,0) as the initial current point
for(sal_uInt32 i(0); i < nCount; i++)
{
const B2DPolygon& aPolygon(rPolyPolygon.getB2DPolygon(i));
const sal_uInt32 nPointCount(aPolygon.count());
if(nPointCount)
{
const bool bPolyUsesControlPoints(aPolygon.areControlPointsUsed());
const sal_uInt32 nEdgeCount(aPolygon.isClosed() ? nPointCount : nPointCount - 1);
sal_Unicode aLastSVGCommand(' '); // last SVG command char
B2DPoint aLeft, aRight; // for quadratic bezier test
// handle polygon start point
B2DPoint aEdgeStart(aPolygon.getB2DPoint(0));
bool bUseRelativeCoordinatesForFirstPoint(bUseRelativeCoordinates);
if(bHandleRelativeNextPointCompatible)
{
// To get around the error that the start point for the next polygon is the
// start point of the current one (and not the last as it was handled up to now)
// do force to write an absolute 'M' command as start for the next polygon
bUseRelativeCoordinatesForFirstPoint = false;
}
// Write 'moveto' and the 1st coordinates, set aLastSVGCommand to 'lineto'
putCommandChar(aResult, aLastSVGCommand, 'M', bUseRelativeCoordinatesForFirstPoint, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeStart.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinatesForFirstPoint, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeStart.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinatesForFirstPoint, bOOXMLMotionPath);
aLastSVGCommand = bUseRelativeCoordinatesForFirstPoint ? 'l' : 'L';
aCurrentSVGPosition = aEdgeStart;
for(sal_uInt32 nIndex(0); nIndex < nEdgeCount; nIndex++)
{
// prepare access to next point
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
const B2DPoint aEdgeEnd(aPolygon.getB2DPoint(nNextIndex));
// handle edge from (aEdgeStart, aEdgeEnd) using indices (nIndex, nNextIndex)
const bool bEdgeIsBezier(bPolyUsesControlPoints
&& (aPolygon.isNextControlPointUsed(nIndex) || aPolygon.isPrevControlPointUsed(nNextIndex)));
if(bEdgeIsBezier)
{
// handle bezier edge
const B2DPoint aControlEdgeStart(aPolygon.getNextControlPoint(nIndex));
const B2DPoint aControlEdgeEnd(aPolygon.getPrevControlPoint(nNextIndex));
bool bIsQuadraticBezier(false);
// check continuity at current edge's start point. For SVG, do NOT use an
// existing continuity since no 'S' or 's' statement should be written. At
// import, that 'previous' control vector is not available. SVG documentation
// says for interpretation:
// "(If there is no previous command or if the previous command was
// not a C, c, S or s, assume the first control point is coincident
// with the current point.)"
// That's what is done from our import, so avoid exporting it as first statement
// is necessary.
const bool bSymmetricAtEdgeStart(
!bOOXMLMotionPath && nIndex != 0
&& aPolygon.getContinuityInPoint(nIndex) == B2VectorContinuity::C2);
if(bDetectQuadraticBeziers)
{
// check for quadratic beziers - that's
// the case if both control points are in
// the same place when they are prolonged
// to the common quadratic control point
// Left: P = (3P1 - P0) / 2
// Right: P = (3P2 - P3) / 2
aLeft = B2DPoint((3.0 * aControlEdgeStart - aEdgeStart) / 2.0);
aRight= B2DPoint((3.0 * aControlEdgeEnd - aEdgeEnd) / 2.0);
bIsQuadraticBezier = aLeft.equal(aRight);
}
if(bIsQuadraticBezier)
{
// approximately equal, export as quadratic bezier
if(bSymmetricAtEdgeStart)
{
putCommandChar(aResult, aLastSVGCommand, 'T', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
else
{
putCommandChar(aResult, aLastSVGCommand, 'Q', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aLeft.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aLeft.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
}
else
{
// export as cubic bezier
if(bSymmetricAtEdgeStart)
{
putCommandChar(aResult, aLastSVGCommand, 'S', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aControlEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aControlEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
else
{
putCommandChar(aResult, aLastSVGCommand, 'C', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aControlEdgeStart.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aControlEdgeStart.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aControlEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aControlEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
}
}
else
{
// straight edge
if(nNextIndex == 0)
{
// it's a closed polygon's last edge and it's not a bezier edge, so there is
// no need to write it
}
else
{
const bool bXEqual(rtl::math::approxEqual(aEdgeStart.getX(), aEdgeEnd.getX()));
const bool bYEqual(rtl::math::approxEqual(aEdgeStart.getY(), aEdgeEnd.getY()));
if(bXEqual && bYEqual)
{
// point is a double point; do not export at all
}
else if(bXEqual && !bOOXMLMotionPath)
{
// export as vertical line
putCommandChar(aResult, aLastSVGCommand, 'V', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
else if(bYEqual && !bOOXMLMotionPath)
{
// export as horizontal line
putCommandChar(aResult, aLastSVGCommand, 'H', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
else
{
// export as line
putCommandChar(aResult, aLastSVGCommand, 'L', bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath);
putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath);
aCurrentSVGPosition = aEdgeEnd;
}
}
}
// prepare edge start for next loop step
aEdgeStart = aEdgeEnd;
}
// close path if closed poly (Z and z are equivalent here, but looks nicer when case is matched)
if(aPolygon.isClosed())
{
putCommandChar(aResult, aLastSVGCommand, 'Z', bUseRelativeCoordinates, bOOXMLMotionPath);
}
else if (bOOXMLMotionPath)
{
putCommandChar(aResult, aLastSVGCommand, 'E', bUseRelativeCoordinates, bOOXMLMotionPath);
}
if(!bHandleRelativeNextPointCompatible)
{
// SVG defines that "the next subpath starts at the same initial point as the current subpath",
// so set aCurrentSVGPosition to the 1st point of the current, now ended and written path
aCurrentSVGPosition = aPolygon.getB2DPoint(0);
}
}
}
return aResult.makeStringAndClear();
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.