/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <osl/diagnose.h>
#include <basegfx/polygon/b3dpolygontools.hxx>
#include <basegfx/polygon/b3dpolygon.hxx>
#include <basegfx/polygon/b3dpolypolygon.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/range/b3drange.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/tuple/b3ituple.hxx>
#include <cassert>
#include <numeric>
namespace basegfx::utils
{
// B3DPolygon tools
void checkClosed(B3DPolygon& rCandidate)
{
while(rCandidate.count() > 1
&& rCandidate.getB3DPoint(0).equal(rCandidate.getB3DPoint(rCandidate.count() - 1)))
{
rCandidate.setClosed(true);
rCandidate.remove(rCandidate.count() - 1);
}
}
sal_uInt32 getIndexOfSuccessor(sal_uInt32 nIndex, const B3DPolygon& rCandidate)
{
OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)");
if(nIndex + 1 < rCandidate.count())
{
return nIndex + 1;
}
else
{
return 0;
}
}
B3DRange getRange(const B3DPolygon& rCandidate)
{
B3DRange aRetval;
const sal_uInt32 nPointCount(rCandidate.count());
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B3DPoint aTestPoint(rCandidate.getB3DPoint(a));
aRetval.expand(aTestPoint);
}
return aRetval;
}
double getLength(const B3DPolygon& rCandidate)
{
double fRetval(0.0);
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 1)
{
const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
for(sal_uInt32 a(0); a < nLoopCount; a++)
{
const sal_uInt32 nNextIndex(getIndexOfSuccessor(a, rCandidate));
const B3DPoint aCurrentPoint(rCandidate.getB3DPoint(a));
const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex));
const B3DVector aVector(aNextPoint - aCurrentPoint);
fRetval += aVector.getLength();
}
}
return fRetval;
}
void applyLineDashing(
const B3DPolygon& rCandidate,
const std::vector<double>& rDotDashArray,
B3DPolyPolygon* pLineTarget,
double fDotDashLength)
{
// clear targets in any case
if(pLineTarget)
{
pLineTarget->clear();
}
// call version that uses callbacks
applyLineDashing(
rCandidate,
rDotDashArray,
// provide callback as lambda
(!pLineTarget
? std::function<void(const basegfx::B3DPolygon&)>()
: [&pLineTarget](const basegfx::B3DPolygon& rSnippet){ pLineTarget->append(rSnippet); }),
fDotDashLength);
}
static void implHandleSnippet(
const B3DPolygon& rSnippet,
const std::function<void(const basegfx::B3DPolygon& rSnippet)>& rTargetCallback,
B3DPolygon& rFirst,
B3DPolygon& rLast)
{
if(rSnippet.isClosed())
{
if(!rFirst.count())
{
rFirst = rSnippet;
}
else
{
if(rLast.count())
{
rTargetCallback(rLast);
}
rLast = rSnippet;
}
}
else
{
rTargetCallback(rSnippet);
}
}
static void implHandleFirstLast(
const std::function<void(const basegfx::B3DPolygon& rSnippet)>& rTargetCallback,
B3DPolygon& rFirst,
B3DPolygon& rLast)
{
if(rFirst.count() && rLast.count()
&& rFirst.getB3DPoint(0).equal(rLast.getB3DPoint(rLast.count() - 1)))
{
// start of first and end of last are the same -> merge them
rLast.append(rFirst);
rLast.removeDoublePoints();
rFirst.clear();
}
if(rLast.count())
{
rTargetCallback(rLast);
}
if(rFirst.count())
{
rTargetCallback(rFirst);
}
}
void applyLineDashing(
const B3DPolygon& rCandidate,
const std::vector<double>& rDotDashArray,
const std::function<void(const basegfx::B3DPolygon& rSnippet)>& rLineTargetCallback,
double fDotDashLength)
{
const sal_uInt32 nPointCount(rCandidate.count());
const sal_uInt32 nDotDashCount(rDotDashArray.size());
if(fDotDashLength <= 0.0)
{
fDotDashLength = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0);
}
if(fDotDashLength <= 0.0 || !rLineTargetCallback || !nPointCount)
{
// parameters make no sense, just add source to targets
if (rLineTargetCallback)
rLineTargetCallback(rCandidate);
return;
}
// precalculate maximal acceptable length of candidate polygon assuming
// we want to create a maximum of fNumberOfAllowedSnippets. In 3D
// use less for fNumberOfAllowedSnippets, ca. 6553.6, double due to line & gap.
// Less in 3D due to potentially blowing up to rounded line segments.
static const double fNumberOfAllowedSnippets(6553.5 * 2.0);
const double fAllowedLength((fNumberOfAllowedSnippets * fDotDashLength) / double(rDotDashArray.size()));
const double fCandidateLength(basegfx::utils::getLength(rCandidate));
std::vector<double> aDotDashArray(rDotDashArray);
if(fCandidateLength > fAllowedLength)
{
// we would produce more than fNumberOfAllowedSnippets, so
// adapt aDotDashArray to exactly produce assumed number. Also
// assert this to let the caller know about it.
// If this asserts: Please think about checking your DotDashArray
// before calling this function or evtl. use the callback version
// to *not* produce that much of data. Even then, you may still
// think about producing too much runtime (!)
assert(true && "applyLineDashing: potentially too expensive to do the requested dismantle - please consider stretched LineDash pattern (!)");
// calculate correcting factor, apply to aDotDashArray and fDotDashLength
// to enlarge these as needed
const double fFactor(fCandidateLength / fAllowedLength);
std::for_each(aDotDashArray.begin(), aDotDashArray.end(), [&fFactor](double &f){ f *= fFactor; });
}
// prepare current edge's start
B3DPoint aCurrentPoint(rCandidate.getB3DPoint(0));
const bool bIsClosed(rCandidate.isClosed());
const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1);
// prepare DotDashArray iteration and the line/gap switching bool
sal_uInt32 nDotDashIndex(0);
bool bIsLine(true);
double fDotDashMovingLength(aDotDashArray[0]);
B3DPolygon aSnippet;
// remember 1st and last snippets to try to merge after execution
// is complete and hand to callback
B3DPolygon aFirstLine, aLastLine;
// iterate over all edges
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// update current edge
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex));
const double fEdgeLength(B3DVector(aNextPoint - aCurrentPoint).getLength());
if(!fTools::equalZero(fEdgeLength))
{
double fLastDotDashMovingLength(0.0);
while(fTools::less(fDotDashMovingLength, fEdgeLength))
{
// new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength]
if(bIsLine)
{
if(!aSnippet.count())
{
aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fLastDotDashMovingLength / fEdgeLength));
}
aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fDotDashMovingLength / fEdgeLength));
implHandleSnippet(aSnippet, rLineTargetCallback, aFirstLine, aLastLine);
aSnippet.clear();
}
// prepare next DotDashArray step and flip line/gap flag
fLastDotDashMovingLength = fDotDashMovingLength;
fDotDashMovingLength += aDotDashArray[(++nDotDashIndex) % nDotDashCount];
bIsLine = !bIsLine;
}
// append snippet [fLastDotDashMovingLength, fEdgeLength]
if(bIsLine)
{
if(!aSnippet.count())
{
aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fLastDotDashMovingLength / fEdgeLength));
}
aSnippet.append(aNextPoint);
}
// prepare move to next edge
fDotDashMovingLength -= fEdgeLength;
}
// prepare next edge step (end point gets new start point)
aCurrentPoint = aNextPoint;
}
// append last intermediate results (if exists)
if(aSnippet.count())
{
if(bIsLine)
{
implHandleSnippet(aSnippet, rLineTargetCallback, aFirstLine, aLastLine);
}
}
if(bIsClosed)
{
implHandleFirstLast(rLineTargetCallback, aFirstLine, aLastLine);
}
}
B3DPolygon applyDefaultNormalsSphere( const B3DPolygon& rCandidate, const B3DPoint& rCenter)
{
B3DPolygon aRetval(rCandidate);
for(sal_uInt32 a(0); a < aRetval.count(); a++)
{
B3DVector aVector(aRetval.getB3DPoint(a) - rCenter);
aVector.normalize();
aRetval.setNormal(a, aVector);
}
return aRetval;
}
B3DPolygon invertNormals( const B3DPolygon& rCandidate)
{
B3DPolygon aRetval(rCandidate);
if(aRetval.areNormalsUsed())
{
for(sal_uInt32 a(0); a < aRetval.count(); a++)
{
aRetval.setNormal(a, -aRetval.getNormal(a));
}
}
return aRetval;
}
B3DPolygon applyDefaultTextureCoordinatesParallel( const B3DPolygon& rCandidate, const B3DRange& rRange, bool bChangeX, bool bChangeY)
{
B3DPolygon aRetval(rCandidate);
if(bChangeX || bChangeY)
{
// create projection of standard texture coordinates in (X, Y) onto
// the 3d coordinates straight
const double fWidth(rRange.getWidth());
const double fHeight(rRange.getHeight());
const bool bWidthSet(!fTools::equalZero(fWidth));
const bool bHeightSet(!fTools::equalZero(fHeight));
const double fOne(1.0);
for(sal_uInt32 a(0); a < aRetval.count(); a++)
{
const B3DPoint aPoint(aRetval.getB3DPoint(a));
B2DPoint aTextureCoordinate(aRetval.getTextureCoordinate(a));
if(bChangeX)
{
if(bWidthSet)
{
aTextureCoordinate.setX((aPoint.getX() - rRange.getMinX()) / fWidth);
}
else
{
aTextureCoordinate.setX(0.0);
}
}
if(bChangeY)
{
if(bHeightSet)
{
aTextureCoordinate.setY(fOne - ((aPoint.getY() - rRange.getMinY()) / fHeight));
}
else
{
aTextureCoordinate.setY(fOne);
}
}
aRetval.setTextureCoordinate(a, aTextureCoordinate);
}
}
return aRetval;
}
B3DPolygon applyDefaultTextureCoordinatesSphere( const B3DPolygon& rCandidate, const B3DPoint& rCenter, bool bChangeX, bool bChangeY)
{
B3DPolygon aRetval(rCandidate);
if(bChangeX || bChangeY)
{
// create texture coordinates using sphere projection to cartesian coordinates,
// use object's center as base
const double fOne(1.0);
const sal_uInt32 nPointCount(aRetval.count());
bool bPolarPoints(false);
sal_uInt32 a;
// create center cartesian coordinates to have a possibility to decide if on boundary
// transitions which value to choose
const B3DRange aPlaneRange(getRange(rCandidate));
const B3DPoint aPlaneCenter(aPlaneRange.getCenter() - rCenter);
const double fXCenter(fOne - ((atan2(aPlaneCenter.getZ(), aPlaneCenter.getX()) + M_PI) / (2 * M_PI)));
for(a = 0; a < nPointCount; a++)
{
const B3DVector aVector(aRetval.getB3DPoint(a) - rCenter);
const double fY(fOne - ((atan2(aVector.getY(), aVector.getXZLength()) + M_PI_2) / M_PI));
B2DPoint aTexCoor(aRetval.getTextureCoordinate(a));
if(fTools::equalZero(fY))
{
// point is a north polar point, no useful X-coordinate can be created.
if(bChangeY)
{
aTexCoor.setY(0.0);
if(bChangeX)
{
bPolarPoints = true;
}
}
}
else if(fTools::equal(fY, fOne))
{
// point is a south polar point, no useful X-coordinate can be created. Set
// Y-coordinate, though
if(bChangeY)
{
aTexCoor.setY(fOne);
if(bChangeX)
{
bPolarPoints = true;
}
}
}
else
{
double fX(fOne - ((atan2(aVector.getZ(), aVector.getX()) + M_PI) / (2 * M_PI)));
// correct cartesian point coordinate dependent from center value
if(fX > fXCenter + 0.5)
{
fX -= fOne;
}
else if(fX < fXCenter - 0.5)
{
fX += fOne;
}
if(bChangeX)
{
aTexCoor.setX(fX);
}
if(bChangeY)
{
aTexCoor.setY(fY);
}
}
aRetval.setTextureCoordinate(a, aTexCoor);
}
if(bPolarPoints)
{
// correct X-texture coordinates if polar points are contained. Those
// coordinates cannot be correct, so use prev or next X-coordinate
for(a = 0; a < nPointCount; a++)
{
B2DPoint aTexCoor(aRetval.getTextureCoordinate(a));
if(fTools::equalZero(aTexCoor.getY()) || fTools::equal(aTexCoor.getY(), fOne))
{
// get prev, next TexCoor and test for pole
const B2DPoint aPrevTexCoor(aRetval.getTextureCoordinate(a ? a - 1 : nPointCount - 1));
const B2DPoint aNextTexCoor(aRetval.getTextureCoordinate((a + 1) % nPointCount));
const bool bPrevPole(fTools::equalZero(aPrevTexCoor.getY()) || fTools::equal(aPrevTexCoor.getY(), fOne));
const bool bNextPole(fTools::equalZero(aNextTexCoor.getY()) || fTools::equal(aNextTexCoor.getY(), fOne));
if(!bPrevPole && !bNextPole)
{
// both no poles, mix them
aTexCoor.setX((aPrevTexCoor.getX() + aNextTexCoor.getX()) / 2.0);
}
else if(!bNextPole)
{
// copy next
aTexCoor.setX(aNextTexCoor.getX());
}
else
{
// copy prev, even if it's a pole, hopefully it is already corrected
aTexCoor.setX(aPrevTexCoor.getX());
}
aRetval.setTextureCoordinate(a, aTexCoor);
}
}
}
}
return aRetval;
}
bool isInside(const B3DPolygon& rCandidate, const B3DPoint& rPoint, bool bWithBorder)
{
if(bWithBorder && isPointOnPolygon(rCandidate, rPoint))
{
return true;
}
else
{
bool bRetval(false);
const B3DVector aPlaneNormal(rCandidate.getNormal());
if(!aPlaneNormal.equalZero())
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount)
{
B3DPoint aCurrentPoint(rCandidate.getB3DPoint(nPointCount - 1));
const double fAbsX(fabs(aPlaneNormal.getX()));
const double fAbsY(fabs(aPlaneNormal.getY()));
const double fAbsZ(fabs(aPlaneNormal.getZ()));
if(fAbsX > fAbsY && fAbsX > fAbsZ)
{
// normal points mostly in X-Direction, use YZ-Polygon projection for check
// x -> y, y -> z
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B3DPoint aPreviousPoint(aCurrentPoint);
aCurrentPoint = rCandidate.getB3DPoint(a);
// cross-over in Z?
const bool bCompZA(fTools::more(aPreviousPoint.getZ(), rPoint.getZ()));
const bool bCompZB(fTools::more(aCurrentPoint.getZ(), rPoint.getZ()));
if(bCompZA != bCompZB)
{
// cross-over in Y?
const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY()));
const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY()));
if(bCompYA == bCompYB)
{
if(bCompYA)
{
bRetval = !bRetval;
}
}
else
{
const double fCompare(
aCurrentPoint.getY() - (aCurrentPoint.getZ() - rPoint.getZ()) *
(aPreviousPoint.getY() - aCurrentPoint.getY()) /
(aPreviousPoint.getZ() - aCurrentPoint.getZ()));
if(fTools::more(fCompare, rPoint.getY()))
{
bRetval = !bRetval;
}
}
}
}
}
else if(fAbsY > fAbsX && fAbsY > fAbsZ)
{
// normal points mostly in Y-Direction, use XZ-Polygon projection for check
// x -> x, y -> z
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B3DPoint aPreviousPoint(aCurrentPoint);
aCurrentPoint = rCandidate.getB3DPoint(a);
// cross-over in Z?
const bool bCompZA(fTools::more(aPreviousPoint.getZ(), rPoint.getZ()));
const bool bCompZB(fTools::more(aCurrentPoint.getZ(), rPoint.getZ()));
if(bCompZA != bCompZB)
{
// cross-over in X?
const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX()));
const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX()));
if(bCompXA == bCompXB)
{
if(bCompXA)
{
bRetval = !bRetval;
}
}
else
{
const double fCompare(
aCurrentPoint.getX() - (aCurrentPoint.getZ() - rPoint.getZ()) *
(aPreviousPoint.getX() - aCurrentPoint.getX()) /
(aPreviousPoint.getZ() - aCurrentPoint.getZ()));
if(fTools::more(fCompare, rPoint.getX()))
{
bRetval = !bRetval;
}
}
}
}
}
else
{
// normal points mostly in Z-Direction, use XY-Polygon projection for check
// x -> x, y -> y
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B3DPoint aPreviousPoint(aCurrentPoint);
aCurrentPoint = rCandidate.getB3DPoint(a);
// cross-over in Y?
const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY()));
const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY()));
if(bCompYA != bCompYB)
{
// cross-over in X?
const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX()));
const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX()));
if(bCompXA == bCompXB)
{
if(bCompXA)
{
bRetval = !bRetval;
}
}
else
{
const double fCompare(
aCurrentPoint.getX() - (aCurrentPoint.getY() - rPoint.getY()) *
(aPreviousPoint.getX() - aCurrentPoint.getX()) /
(aPreviousPoint.getY() - aCurrentPoint.getY()));
if(fTools::more(fCompare, rPoint.getX()))
{
bRetval = !bRetval;
}
}
}
}
}
}
}
return bRetval;
}
}
bool isPointOnLine(const B3DPoint& rStart, const B3DPoint& rEnd, const B3DPoint& rCandidate, bool bWithPoints)
{
if(rCandidate.equal(rStart) || rCandidate.equal(rEnd))
{
// candidate is in epsilon around start or end -> inside
return bWithPoints;
}
else if(rStart.equal(rEnd))
{
// start and end are equal, but candidate is outside their epsilon -> outside
return false;
}
else
{
const B3DVector aEdgeVector(rEnd - rStart);
const B3DVector aTestVector(rCandidate - rStart);
if(areParallel(aEdgeVector, aTestVector))
{
double fParamTestOnCurr(0.0);
if(aEdgeVector.getX() > aEdgeVector.getY())
{
if(aEdgeVector.getX() > aEdgeVector.getZ())
{
// X is biggest
fParamTestOnCurr = aTestVector.getX() / aEdgeVector.getX();
}
else
{
// Z is biggest
fParamTestOnCurr = aTestVector.getZ() / aEdgeVector.getZ();
}
}
else
{
if(aEdgeVector.getY() > aEdgeVector.getZ())
{
// Y is biggest
fParamTestOnCurr = aTestVector.getY() / aEdgeVector.getY();
}
else
{
// Z is biggest
fParamTestOnCurr = aTestVector.getZ() / aEdgeVector.getZ();
}
}
if(fParamTestOnCurr > 0.0 && fTools::less(fParamTestOnCurr, 1.0))
{
return true;
}
}
return false;
}
}
bool isPointOnPolygon(const B3DPolygon& rCandidate, const B3DPoint& rPoint)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 1)
{
const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
B3DPoint aCurrentPoint(rCandidate.getB3DPoint(0));
for(sal_uInt32 a(0); a < nLoopCount; a++)
{
const B3DPoint aNextPoint(rCandidate.getB3DPoint((a + 1) % nPointCount));
if(isPointOnLine(aCurrentPoint, aNextPoint, rPoint, true/*bWithPoints*/))
{
return true;
}
aCurrentPoint = aNextPoint;
}
}
else if(nPointCount)
{
return rPoint.equal(rCandidate.getB3DPoint(0));
}
return false;
}
bool getCutBetweenLineAndPlane(const B3DVector& rPlaneNormal, const B3DPoint& rPlanePoint, const B3DPoint& rEdgeStart, const B3DPoint& rEdgeEnd, double& fCut)
{
if(!rPlaneNormal.equalZero() && !rEdgeStart.equal(rEdgeEnd))
{
const B3DVector aTestEdge(rEdgeEnd - rEdgeStart);
const double fScalarEdge(rPlaneNormal.scalar(aTestEdge));
if(!fTools::equalZero(fScalarEdge))
{
const B3DVector aCompareEdge(rPlanePoint - rEdgeStart);
const double fScalarCompare(rPlaneNormal.scalar(aCompareEdge));
fCut = fScalarCompare / fScalarEdge;
return true;
}
}
return false;
}
// snap points of horizontal or vertical edges to discrete values
B3DPolygon snapPointsOfHorizontalOrVerticalEdges(const B3DPolygon& rCandidate)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 1)
{
// Start by copying the source polygon to get a writeable copy. The closed state is
// copied by aRetval's initialisation, too, so no need to copy it in this method
B3DPolygon aRetval(rCandidate);
// prepare geometry data. Get rounded from original
B3ITuple aPrevTuple(basegfx::fround(rCandidate.getB3DPoint(nPointCount - 1)));
B3DPoint aCurrPoint(rCandidate.getB3DPoint(0));
B3ITuple aCurrTuple(basegfx::fround(aCurrPoint));
// loop over all points. This will also snap the implicit closing edge
// even when not closed, but that's no problem here
for(sal_uInt32 a(0); a < nPointCount; a++)
{
// get next point. Get rounded from original
const bool bLastRun(a + 1 == nPointCount);
const sal_uInt32 nNextIndex(bLastRun ? 0 : a + 1);
const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex));
const B3ITuple aNextTuple(basegfx::fround(aNextPoint));
// get the states
const bool bPrevVertical(aPrevTuple.getX() == aCurrTuple.getX());
const bool bNextVertical(aNextTuple.getX() == aCurrTuple.getX());
const bool bPrevHorizontal(aPrevTuple.getY() == aCurrTuple.getY());
const bool bNextHorizontal(aNextTuple.getY() == aCurrTuple.getY());
const bool bSnapX(bPrevVertical || bNextVertical);
const bool bSnapY(bPrevHorizontal || bNextHorizontal);
if(bSnapX || bSnapY)
{
const B3DPoint aSnappedPoint(
bSnapX ? aCurrTuple.getX() : aCurrPoint.getX(),
bSnapY ? aCurrTuple.getY() : aCurrPoint.getY(),
aCurrPoint.getZ());
aRetval.setB3DPoint(a, aSnappedPoint);
}
// prepare next point
if(!bLastRun)
{
aPrevTuple = aCurrTuple;
aCurrPoint = aNextPoint;
aCurrTuple = aNextTuple;
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'normalize' is required to be utilized.