/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <tools/stream.hxx>
#include <vcl/dibtools.hxx>
#include <vcl/svapp.hxx>
#include <vcl/bitmap.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/bitmap/BitmapSimpleColorQuantizationFilter.hxx>
#include <sal/log.hxx>
#include <unx/x11/xlimits.hxx>
#include "bmp.hxx"
using namespace x11;
/*
* helper functions
*/
static void writeLE( sal_uInt16 nNumber, sal_uInt8* pBuffer )
{
pBuffer[ 0 ] = (nNumber & 0xff);
pBuffer[ 1 ] = ((nNumber>>8)&0xff);
}
static void writeLE( sal_uInt32 nNumber, sal_uInt8* pBuffer )
{
pBuffer[ 0 ] = (nNumber & 0xff);
pBuffer[ 1 ] = ((nNumber>>8)&0xff);
pBuffer[ 2 ] = ((nNumber>>16)&0xff);
pBuffer[ 3 ] = ((nNumber>>24)&0xff);
}
static sal_uInt16 readLE16( const sal_uInt8* pBuffer )
{
//This is untainted data which comes from a controlled source
//so, using a byte-swapping pattern which coverity doesn't
//detect as such
//http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
sal_uInt16 v = pBuffer[1]; v <<= 8;
v |= pBuffer[0];
return v;
}
static sal_uInt32 readLE32( const sal_uInt8* pBuffer )
{
//This is untainted data which comes from a controlled source
//so, using a byte-swapping pattern which coverity doesn't
//detect as such
//http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
sal_uInt32 v = pBuffer[3]; v <<= 8;
v |= pBuffer[2]; v <<= 8;
v |= pBuffer[1]; v <<= 8;
v |= pBuffer[0];
return v;
}
/*
* scanline helpers
*/
static void X11_writeScanlinePixel( unsigned long nColor, sal_uInt8* pScanline, int depth, int x )
{
switch( depth )
{
case 1:
pScanline[ x/8 ] &= ~(1 << (x&7));
pScanline[ x/8 ] |= ((nColor & 1) << (x&7));
break;
case 4:
pScanline[ x/2 ] &= ((x&1) ? 0x0f : 0xf0);
pScanline[ x/2 ] |= ((x&1) ? (nColor & 0x0f) : ((nColor & 0x0f) << 4));
break;
default:
case 8:
pScanline[ x ] = (nColor & 0xff);
break;
}
}
static sal_uInt8* X11_getPaletteBmpFromImage(
Display* pDisplay,
XImage* pImage,
Colormap aColormap,
sal_Int32& rOutSize
)
{
sal_uInt32 nColors = 0;
rOutSize = 0;
sal_uInt8* pBuffer = nullptr;
sal_uInt32 nHeaderSize, nScanlineSize;
sal_uInt16 nBitCount;
// determine header and scanline size
switch( pImage->depth )
{
case 1:
nHeaderSize = 64;
nScanlineSize = (pImage->width+31)/32;
nBitCount = 1;
break;
case 4:
nHeaderSize = 72;
nScanlineSize = (pImage->width+1)/2;
nBitCount = 4;
break;
default:
case 8:
nHeaderSize = 1084;
nScanlineSize = pImage->width;
nBitCount = 8;
break;
}
// adjust scan lines to begin on %4 boundaries
if( nScanlineSize & 3 )
{
nScanlineSize &= 0xfffffffc;
nScanlineSize += 4;
}
// allocate buffer to hold header and scanlines, initialize to zero
rOutSize = nHeaderSize + nScanlineSize*pImage->height;
pBuffer = static_cast<sal_uInt8*>(rtl_allocateZeroMemory( rOutSize ));
for( int y = 0; y < pImage->height; y++ )
{
sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
for( int x = 0; x < pImage->width; x++ )
{
unsigned long nPixel = XGetPixel( pImage, x, y );
if( nPixel >= nColors )
nColors = nPixel+1;
X11_writeScanlinePixel( nPixel, pScanline, pImage->depth, x );
}
}
// fill in header fields
pBuffer[ 0 ] = 'B';
pBuffer[ 1 ] = 'M';
writeLE( nHeaderSize, pBuffer+10 );
writeLE( sal_uInt32(40), pBuffer+14 );
writeLE( static_cast<sal_uInt32>(pImage->width), pBuffer+18 );
writeLE( static_cast<sal_uInt32>(pImage->height), pBuffer+22 );
writeLE( sal_uInt16(1), pBuffer+26 );
writeLE( nBitCount, pBuffer+28 );
writeLE( static_cast<sal_uInt32>(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
writeLE( static_cast<sal_uInt32>(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
writeLE( nColors, pBuffer+46 );
writeLE( nColors, pBuffer+50 );
XColor aColors[256];
if( nColors > (1U << nBitCount) ) // paranoia
nColors = (1U << nBitCount);
for( unsigned long nPixel = 0; nPixel < nColors; nPixel++ )
{
aColors[nPixel].flags = DoRed | DoGreen | DoBlue;
aColors[nPixel].pixel = nPixel;
}
XQueryColors( pDisplay, aColormap, aColors, nColors );
for( sal_uInt32 i = 0; i < nColors; i++ )
{
pBuffer[ 54 + i*4 ] = static_cast<sal_uInt8>(aColors[i].blue >> 8);
pBuffer[ 55 + i*4 ] = static_cast<sal_uInt8>(aColors[i].green >> 8);
pBuffer[ 56 + i*4 ] = static_cast<sal_uInt8>(aColors[i].red >> 8);
}
// done
return pBuffer;
}
static unsigned long doRightShift( unsigned long nValue, int nShift )
{
return (nShift > 0) ? (nValue >> nShift) : (nValue << (-nShift));
}
static unsigned long doLeftShift( unsigned long nValue, int nShift )
{
return (nShift > 0) ? (nValue << nShift) : (nValue >> (-nShift));
}
static void getShift( unsigned long nMask, int& rShift, int& rSigBits, int& rShift2 )
{
unsigned long nUseMask = nMask;
rShift = 0;
while( nMask & 0xffffff00 )
{
rShift++;
nMask >>= 1;
}
if( rShift == 0 )
while( ! (nMask & 0x00000080) )
{
rShift--;
nMask <<= 1;
}
int nRotate = int(sizeof(unsigned long)*8) - rShift;
rSigBits = 0;
nMask = doRightShift( nUseMask, rShift) ;
while( nRotate-- )
{
if( nMask & 1 )
rSigBits++;
nMask >>= 1;
}
rShift2 = 0;
if( rSigBits < 8 )
rShift2 = 8-rSigBits;
}
static sal_uInt8* X11_getTCBmpFromImage(
Display* pDisplay,
XImage* pImage,
sal_Int32& rOutSize,
int nScreenNo
)
{
// get masks from visual info (guesswork)
XVisualInfo aVInfo;
if( ! XMatchVisualInfo( pDisplay, nScreenNo, pImage->depth, TrueColor, &aVInfo ) )
return nullptr;
rOutSize = 0;
sal_uInt8* pBuffer = nullptr;
sal_uInt32 nHeaderSize = 60;
sal_uInt32 nScanlineSize = pImage->width*3;
// adjust scan lines to begin on %4 boundaries
if( nScanlineSize & 3 )
{
nScanlineSize &= 0xfffffffc;
nScanlineSize += 4;
}
int nRedShift, nRedSig, nRedShift2 = 0;
getShift( aVInfo.red_mask, nRedShift, nRedSig, nRedShift2 );
int nGreenShift, nGreenSig, nGreenShift2 = 0;
getShift( aVInfo.green_mask, nGreenShift, nGreenSig, nGreenShift2 );
int nBlueShift, nBlueSig, nBlueShift2 = 0;
getShift( aVInfo.blue_mask, nBlueShift, nBlueSig, nBlueShift2 );
// allocate buffer to hold header and scanlines, initialize to zero
rOutSize = nHeaderSize + nScanlineSize*pImage->height;
pBuffer = static_cast<sal_uInt8*>(rtl_allocateZeroMemory( rOutSize ));
for( int y = 0; y < pImage->height; y++ )
{
sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
for( int x = 0; x < pImage->width; x++ )
{
unsigned long nPixel = XGetPixel( pImage, x, y );
sal_uInt8 nValue = static_cast<sal_uInt8>(doRightShift( nPixel&aVInfo.blue_mask, nBlueShift));
if( nBlueShift2 )
nValue |= (nValue >> nBlueShift2 );
*pScanline++ = nValue;
nValue = static_cast<sal_uInt8>(doRightShift( nPixel&aVInfo.green_mask, nGreenShift));
if( nGreenShift2 )
nValue |= (nValue >> nGreenShift2 );
*pScanline++ = nValue;
nValue = static_cast<sal_uInt8>(doRightShift( nPixel&aVInfo.red_mask, nRedShift));
if( nRedShift2 )
nValue |= (nValue >> nRedShift2 );
*pScanline++ = nValue;
}
}
// fill in header fields
pBuffer[ 0 ] = 'B';
pBuffer[ 1 ] = 'M';
writeLE( nHeaderSize, pBuffer+10 );
writeLE( sal_uInt32(40), pBuffer+14 );
writeLE( static_cast<sal_uInt32>(pImage->width), pBuffer+18 );
writeLE( static_cast<sal_uInt32>(pImage->height), pBuffer+22 );
writeLE( sal_uInt16(1), pBuffer+26 );
writeLE( sal_uInt16(24), pBuffer+28 );
writeLE( static_cast<sal_uInt32>(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
writeLE( static_cast<sal_uInt32>(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
// done
return pBuffer;
}
sal_uInt8* x11::X11_getBmpFromPixmap(
Display* pDisplay,
Drawable aDrawable,
Colormap aColormap,
sal_Int32& rOutSize
)
{
// get geometry of drawable
::Window aRoot;
int x,y;
unsigned int w, h, bw, d;
XGetGeometry( pDisplay, aDrawable, &aRoot, &x, &y, &w, &h, &bw, &d );
// find which screen we are on
int nScreenNo = ScreenCount( pDisplay );
while( nScreenNo-- )
{
if( RootWindow( pDisplay, nScreenNo ) == aRoot )
break;
}
if( nScreenNo < 0 )
return nullptr;
if( aColormap == None )
aColormap = DefaultColormap( pDisplay, nScreenNo );
// get the image
XImage* pImage = XGetImage( pDisplay, aDrawable, 0, 0, w, h, AllPlanes, ZPixmap );
if( ! pImage )
return nullptr;
sal_uInt8* pBmp = d <= 8 ?
X11_getPaletteBmpFromImage( pDisplay, pImage, aColormap, rOutSize ) :
X11_getTCBmpFromImage( pDisplay, pImage, rOutSize, nScreenNo );
XDestroyImage( pImage );
return pBmp;
}
/*
* PixmapHolder
*/
PixmapHolder::PixmapHolder( Display* pDisplay )
: m_pDisplay(pDisplay)
, m_aColormap(None)
, m_aPixmap(None)
, m_aBitmap(None)
, m_nRedShift(0)
, m_nGreenShift(0)
, m_nBlueShift(0)
, m_nBlueShift2Mask(0)
, m_nRedShift2Mask(0)
, m_nGreenShift2Mask(0)
{
/* try to get a 24 bit true color visual, if that fails,
* revert to default visual
*/
if( ! XMatchVisualInfo( m_pDisplay, DefaultScreen( m_pDisplay ), 24, TrueColor, &m_aInfo ) )
{
#if OSL_DEBUG_LEVEL > 1
SAL_INFO("vcl.unx.dtrans", "PixmapHolder reverting to default visual.");
#endif
Visual* pVisual = DefaultVisual( m_pDisplay, DefaultScreen( m_pDisplay ) );
m_aInfo.screen = DefaultScreen( m_pDisplay );
m_aInfo.visual = pVisual;
m_aInfo.visualid = pVisual->visualid;
m_aInfo.c_class = pVisual->c_class;
m_aInfo.red_mask = pVisual->red_mask;
m_aInfo.green_mask = pVisual->green_mask;
m_aInfo.blue_mask = pVisual->blue_mask;
m_aInfo.depth = DefaultDepth( m_pDisplay, m_aInfo.screen );
}
m_aColormap = DefaultColormap( m_pDisplay, m_aInfo.screen );
#if OSL_DEBUG_LEVEL > 1
static const char* pClasses[] =
{ "StaticGray", "GrayScale", "StaticColor", "PseudoColor", "TrueColor", "DirectColor" };
SAL_INFO("vcl.unx.dtrans", "PixmapHolder visual: id = "
<< std::showbase << std::hex
<< m_aInfo.visualid
<< ", class = "
<< ((m_aInfo.c_class >= 0 &&
unsigned(m_aInfo.c_class) <
SAL_N_ELEMENTS(pClasses)) ?
pClasses[m_aInfo.c_class] :
"<unknown>")
<< " ("
<< std::dec
<< m_aInfo.c_class
<< "), depth="
<< m_aInfo.depth
<< "; color map = "
<< std::showbase << std::hex
<< m_aColormap);
#endif
if( m_aInfo.c_class != TrueColor )
return;
int nRedShift2(0);
int nGreenShift2(0);
int nBlueShift2(0);
int nRedSig, nGreenSig, nBlueSig;
getShift( m_aInfo.red_mask, m_nRedShift, nRedSig, nRedShift2 );
getShift( m_aInfo.green_mask, m_nGreenShift, nGreenSig, nGreenShift2 );
getShift( m_aInfo.blue_mask, m_nBlueShift, nBlueSig, nBlueShift2 );
m_nBlueShift2Mask = nBlueShift2 ? ~static_cast<unsigned long>((1<<nBlueShift2)-1) : ~0L;
m_nGreenShift2Mask = nGreenShift2 ? ~static_cast<unsigned long>((1<<nGreenShift2)-1) : ~0L;
m_nRedShift2Mask = nRedShift2 ? ~static_cast<unsigned long>((1<<nRedShift2)-1) : ~0L;
}
PixmapHolder::~PixmapHolder()
{
if( m_aPixmap != None )
XFreePixmap( m_pDisplay, m_aPixmap );
if( m_aBitmap != None )
XFreePixmap( m_pDisplay, m_aBitmap );
}
unsigned long PixmapHolder::getTCPixel( sal_uInt8 r, sal_uInt8 g, sal_uInt8 b ) const
{
unsigned long nPixel = 0;
unsigned long nValue = static_cast<unsigned long>(b);
nValue &= m_nBlueShift2Mask;
nPixel |= doLeftShift( nValue, m_nBlueShift );
nValue = static_cast<unsigned long>(g);
nValue &= m_nGreenShift2Mask;
nPixel |= doLeftShift( nValue, m_nGreenShift );
nValue = static_cast<unsigned long>(r);
nValue &= m_nRedShift2Mask;
nPixel |= doLeftShift( nValue, m_nRedShift );
return nPixel;
}
void PixmapHolder::setBitmapDataPalette( const sal_uInt8* pData, XImage* pImage )
{
// setup palette
XColor aPalette[256];
sal_uInt32 nColors = readLE32( pData+32 );
sal_uInt32 nWidth = readLE32( pData+4 );
sal_uInt32 nHeight = readLE32( pData+8 );
sal_uInt16 nDepth = readLE16( pData+14 );
for( sal_uInt32 i = 0 ; i < nColors; i++ )
{
if( m_aInfo.c_class != TrueColor )
{
//This is untainted data which comes from a controlled source
//so, using a byte-swapping pattern which coverity doesn't
//detect as such
//http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
aPalette[i].red = static_cast<unsigned short>(pData[42 + i*4]);
aPalette[i].red <<= 8;
aPalette[i].red |= static_cast<unsigned short>(pData[42 + i*4]);
aPalette[i].green = static_cast<unsigned short>(pData[41 + i*4]);
aPalette[i].green <<= 8;
aPalette[i].green |= static_cast<unsigned short>(pData[41 + i*4]);
aPalette[i].blue = static_cast<unsigned short>(pData[40 + i*4]);
aPalette[i].blue <<= 8;
aPalette[i].blue |= static_cast<unsigned short>(pData[40 + i*4]);
XAllocColor( m_pDisplay, m_aColormap, aPalette+i );
}
else
aPalette[i].pixel = getTCPixel( pData[42+i*4], pData[41+i*4], pData[40+i*4] );
}
const sal_uInt8* pBMData = pData + readLE32( pData ) + 4*nColors;
sal_uInt32 nScanlineSize = 0;
switch( nDepth )
{
case 1:
nScanlineSize = (nWidth+31)/32;
break;
case 4:
nScanlineSize = (nWidth+1)/2;
break;
case 8:
nScanlineSize = nWidth;
break;
}
// adjust scan lines to begin on %4 boundaries
if( nScanlineSize & 3 )
{
nScanlineSize &= 0xfffffffc;
nScanlineSize += 4;
}
// allocate buffer to hold header and scanlines, initialize to zero
for( unsigned int y = 0; y < nHeight; y++ )
{
const sal_uInt8* pScanline = pBMData + (nHeight-1-y)*nScanlineSize;
for( unsigned int x = 0; x < nWidth; x++ )
{
int nCol = 0;
switch( nDepth )
{
case 1: nCol = (pScanline[ x/8 ] & (0x80 >> (x&7))) != 0 ? 0 : 1; break;
case 4:
if( x & 1 )
nCol = static_cast<int>(pScanline[ x/2 ] >> 4);
else
nCol = static_cast<int>(pScanline[ x/2 ] & 0x0f);
break;
case 8: nCol = static_cast<int>(pScanline[x]);
}
XPutPixel( pImage, x, y, aPalette[nCol].pixel );
}
}
}
void PixmapHolder::setBitmapDataTCDither( const sal_uInt8* pData, XImage* pImage )
{
XColor aPalette[216];
int nNonAllocs = 0;
for( int r = 0; r < 6; r++ )
{
for( int g = 0; g < 6; g++ )
{
for( int b = 0; b < 6; b++ )
{
int i = r*36+g*6+b;
aPalette[i].red = r == 5 ? 0xffff : r*10922;
aPalette[i].green = g == 5 ? 0xffff : g*10922;
aPalette[i].blue = b == 5 ? 0xffff : b*10922;
aPalette[i].pixel = 0;
if( ! XAllocColor( m_pDisplay, m_aColormap, aPalette+i ) )
nNonAllocs++;
}
}
}
if( nNonAllocs )
{
XColor aRealPalette[256];
int nColors = 1 << m_aInfo.depth;
int i;
for( i = 0; i < nColors; i++ )
aRealPalette[i].pixel = static_cast<unsigned long>(i);
XQueryColors( m_pDisplay, m_aColormap, aRealPalette, nColors );
for( i = 0; i < nColors; i++ )
{
sal_uInt8 nIndex =
36*static_cast<sal_uInt8>(aRealPalette[i].red/10923) +
6*static_cast<sal_uInt8>(aRealPalette[i].green/10923) +
static_cast<sal_uInt8>(aRealPalette[i].blue/10923);
if( aPalette[nIndex].pixel == 0 )
aPalette[nIndex] = aRealPalette[i];
}
}
sal_uInt32 nWidth = readLE32( pData+4 );
sal_uInt32 nHeight = readLE32( pData+8 );
const sal_uInt8* pBMData = pData + readLE32( pData );
sal_uInt32 nScanlineSize = nWidth*3;
// adjust scan lines to begin on %4 boundaries
if( nScanlineSize & 3 )
{
nScanlineSize &= 0xfffffffc;
nScanlineSize += 4;
}
for( int y = 0; y < static_cast<int>(nHeight); y++ )
{
const sal_uInt8* pScanline = pBMData + (nHeight-1-static_cast<sal_uInt32>(y))*nScanlineSize;
for( int x = 0; x < static_cast<int>(nWidth); x++ )
{
sal_uInt8 b = pScanline[3*x];
sal_uInt8 g = pScanline[3*x+1];
sal_uInt8 r = pScanline[3*x+2];
sal_uInt8 i = 36*(r/43) + 6*(g/43) + (b/43);
XPutPixel( pImage, x, y, aPalette[ i ].pixel );
}
}
}
void PixmapHolder::setBitmapDataTC( const sal_uInt8* pData, XImage* pImage )
{
sal_uInt32 nWidth = readLE32( pData+4 );
sal_uInt32 nHeight = readLE32( pData+8 );
if (!nWidth || !nHeight)
return;
const sal_uInt8* pBMData = pData + readLE32( pData );
sal_uInt32 nScanlineSize = nWidth*3;
// adjust scan lines to begin on %4 boundaries
if( nScanlineSize & 3 )
{
nScanlineSize &= 0xfffffffc;
nScanlineSize += 4;
}
for( int y = 0; y < static_cast<int>(nHeight); y++ )
{
const sal_uInt8* pScanline = pBMData + (nHeight-1-static_cast<sal_uInt32>(y))*nScanlineSize;
for( int x = 0; x < static_cast<int>(nWidth); x++ )
{
unsigned long nPixel = getTCPixel( pScanline[3*x+2], pScanline[3*x+1], pScanline[3*x] );
XPutPixel( pImage, x, y, nPixel );
}
}
}
bool PixmapHolder::needsConversion( const sal_uInt8* pData ) const
{
if( pData[0] != 'B' || pData[1] != 'M' )
return true;
pData = pData+14;
sal_uInt32 nDepth = readLE32( pData+14 );
if( nDepth == 24 )
{
if( m_aInfo.c_class != TrueColor )
return true;
}
else if( nDepth != static_cast<sal_uInt32>(m_aInfo.depth) )
{
if( m_aInfo.c_class != TrueColor )
return true;
}
return false;
}
Pixmap PixmapHolder::setBitmapData( const sal_uInt8* pData )
{
if( pData[0] != 'B' || pData[1] != 'M' )
return None;
pData = pData+14;
// reject compressed data
if( readLE32( pData + 16 ) != 0 )
return None;
sal_uInt32 nWidth = readLE32( pData+4 );
sal_uInt32 nHeight = readLE32( pData+8 );
if( m_aPixmap != None )
{
XFreePixmap( m_pDisplay, m_aPixmap );
m_aPixmap = None;
}
if( m_aBitmap != None )
{
XFreePixmap( m_pDisplay, m_aBitmap );
m_aBitmap = None;
}
m_aPixmap = limitXCreatePixmap( m_pDisplay,
RootWindow( m_pDisplay, m_aInfo.screen ),
nWidth, nHeight, m_aInfo.depth );
if( m_aPixmap != None )
{
XImage aImage;
aImage.width = static_cast<int>(nWidth);
aImage.height = static_cast<int>(nHeight);
aImage.xoffset = 0;
aImage.format = ZPixmap;
aImage.data = nullptr;
aImage.byte_order = ImageByteOrder( m_pDisplay );
aImage.bitmap_unit = BitmapUnit( m_pDisplay );
aImage.bitmap_bit_order = BitmapBitOrder( m_pDisplay );
aImage.bitmap_pad = BitmapPad( m_pDisplay );
aImage.depth = m_aInfo.depth;
aImage.red_mask = m_aInfo.red_mask;
aImage.green_mask = m_aInfo.green_mask;
aImage.blue_mask = m_aInfo.blue_mask;
aImage.bytes_per_line = 0; // filled in by XInitImage
if( m_aInfo.depth <= 8 )
aImage.bits_per_pixel = m_aInfo.depth;
else
aImage.bits_per_pixel = 8*((m_aInfo.depth+7)/8);
aImage.obdata = nullptr;
XInitImage( &aImage );
aImage.data = static_cast<char*>(std::malloc( nHeight*aImage.bytes_per_line ));
if( readLE32( pData+14 ) == 24 )
{
if( m_aInfo.c_class == TrueColor )
setBitmapDataTC( pData, &aImage );
else
setBitmapDataTCDither( pData, &aImage );
}
else
setBitmapDataPalette( pData, &aImage );
// put the image
XPutImage( m_pDisplay,
m_aPixmap,
DefaultGC( m_pDisplay, m_aInfo.screen ),
&aImage,
0, 0,
0, 0,
nWidth, nHeight );
// clean up
std::free( aImage.data );
// prepare bitmap (mask)
m_aBitmap = limitXCreatePixmap( m_pDisplay,
RootWindow( m_pDisplay, m_aInfo.screen ),
nWidth, nHeight, 1 );
XGCValues aVal;
aVal.function = GXcopy;
aVal.foreground = 0xffffffff;
GC aGC = XCreateGC( m_pDisplay, m_aBitmap, GCFunction | GCForeground, &aVal );
XFillRectangle( m_pDisplay, m_aBitmap, aGC, 0, 0, nWidth, nHeight );
XFreeGC( m_pDisplay, aGC );
}
return m_aPixmap;
}
css::uno::Sequence<sal_Int8> x11::convertBitmapDepth(
css::uno::Sequence<sal_Int8> const & data, int depth)
{
if (depth < 4) {
depth = 1;
} else if (depth < 8) {
depth = 4;
} else if (depth > 8 && depth < 24) {
depth = 24;
}
SolarMutexGuard g;
SvMemoryStream in(
const_cast<sal_Int8 *>(data.getConstArray()), data.getLength(),
StreamMode::READ);
Bitmap bm;
ReadDIB(bm, in, true);
if (bm.getPixelFormat() == vcl::PixelFormat::N24_BPP && depth <= 8) {
bm.Dither();
}
if (vcl::pixelFormatBitCount(bm.getPixelFormat()) != depth) {
switch (depth) {
case 1:
bm.Convert(BmpConversion::N1BitThreshold);
break;
case 4:
{
BitmapEx aBmpEx(bm);
BitmapFilter::Filter(aBmpEx, BitmapSimpleColorQuantizationFilter(1<<4));
bm = aBmpEx.GetBitmap();
}
break;
case 8:
{
BitmapEx aBmpEx(bm);
BitmapFilter::Filter(aBmpEx, BitmapSimpleColorQuantizationFilter(1<<8));
bm = aBmpEx.GetBitmap();
}
break;
case 24:
bm.Convert(BmpConversion::N24Bit);
break;
}
}
SvMemoryStream out;
WriteDIB(bm, out, false, true);
return css::uno::Sequence<sal_Int8>(
static_cast<sal_Int8 const *>(out.GetData()), out.GetEndOfData());
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V629 Consider inspecting the '1 << nBlueShift2' expression. Bit shifting of the 32-bit value with a subsequent expansion to the 64-bit type.
↑ V629 Consider inspecting the '1 << nGreenShift2' expression. Bit shifting of the 32-bit value with a subsequent expansion to the 64-bit type.
↑ V629 Consider inspecting the '1 << nRedShift2' expression. Bit shifting of the 32-bit value with a subsequent expansion to the 64-bit type.