/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */
 
#include <sal/config.h>
 
#include <cstdlib>
#include <tuple>
 
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/range/b2drectangle.hxx>
#include <basegfx/utils/canvastools.hxx>
#include <basegfx/utils/keystoplerp.hxx>
#include <basegfx/utils/lerp.hxx>
#include <basegfx/utils/tools.hxx>
#include <com/sun/star/rendering/TexturingMode.hpp>
#include <rtl/math.hxx>
#include <comphelper/diagnose_ex.hxx>
#include <tools/poly.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/canvastools.hxx>
#include <vcl/virdev.hxx>
#include <vcl/gradient.hxx>
 
#include <canvas/canvastools.hxx>
#include <parametricpolypolygon.hxx>
 
#include "canvashelper.hxx"
#include "impltools.hxx"
 
 
using namespace ::com::sun::star;
 
namespace vclcanvas
{
    namespace
    {
        bool textureFill( OutputDevice&         rOutDev,
                          const GraphicObject&  rGraphic,
                          const ::Point&        rPosPixel,
                          const ::Size&         rNextTileX,
                          const ::Size&         rNextTileY,
                          sal_Int32             nTilesX,
                          sal_Int32             nTilesY,
                          const ::Size&         rTileSize,
                          const GraphicAttr&    rAttr)
        {
            bool bRet( false );
            Point   aCurrPos;
            int     nX, nY;
 
            for( nY=0; nY < nTilesY; ++nY )
            {
                aCurrPos.setX( rPosPixel.X() + nY*rNextTileY.Width() );
                aCurrPos.setY( rPosPixel.Y() + nY*rNextTileY.Height() );
 
                for( nX=0; nX < nTilesX; ++nX )
                {
                    // update return value. This method should return true, if
                    // at least one of the looped Draws succeeded.
                    bRet |= rGraphic.Draw(rOutDev,
                                          aCurrPos,
                                          rTileSize,
                                          &rAttr);
 
                    aCurrPos.AdjustX(rNextTileX.Width() );
                    aCurrPos.AdjustY(rNextTileX.Height() );
                }
            }
 
            return bRet;
        }
 
 
        /** Fill linear or axial gradient
 
            Since most of the code for linear and axial gradients are
            the same, we've a unified method here
         */
        void fillLinearGradient( OutputDevice&                                  rOutDev,
                                 const ::basegfx::B2DHomMatrix&                 rTextureTransform,
                                 const ::tools::Rectangle&                             rBounds,
                                 unsigned int                                   nStepCount,
                                 const ::canvas::ParametricPolyPolygon::Values& rValues,
                                 const std::vector< ::Color >&                  rColors )
        {
            // determine general position of gradient in relation to
            // the bound rect
            // =====================================================
 
            ::basegfx::B2DPoint aLeftTop( 0.0, 0.0 );
            ::basegfx::B2DPoint aLeftBottom( 0.0, 1.0 );
            ::basegfx::B2DPoint aRightTop( 1.0, 0.0 );
            ::basegfx::B2DPoint aRightBottom( 1.0, 1.0 );
 
            aLeftTop    *= rTextureTransform;
            aLeftBottom *= rTextureTransform;
            aRightTop   *= rTextureTransform;
            aRightBottom*= rTextureTransform;
 
            // calc length of bound rect diagonal
            const ::basegfx::B2DVector aBoundRectDiagonal(
                vcl::unotools::b2DPointFromPoint( rBounds.TopLeft() ) -
                vcl::unotools::b2DPointFromPoint( rBounds.BottomRight() ) );
            const double nDiagonalLength( aBoundRectDiagonal.getLength() );
 
            // create direction of gradient:
            //     _______
            //     |  |  |
            // ->  |  |  | ...
            //     |  |  |
            //     -------
            ::basegfx::B2DVector aDirection( aRightTop - aLeftTop );
            aDirection.normalize();
 
            // now, we potentially have to enlarge our gradient area
            // atop and below the transformed [0,1]x[0,1] unit rect,
            // for the gradient to fill the complete bound rect.
            ::basegfx::utils::infiniteLineFromParallelogram( aLeftTop,
                                                             aLeftBottom,
                                                             aRightTop,
                                                             aRightBottom,
                                                             vcl::unotools::b2DRectangleFromRectangle(rBounds) );
 
 
            // render gradient
            // ===============
 
            // First try to use directly VCL's DrawGradient(), as that one is generally
            // a better choice than here decomposing to polygons. The VCL API allows
            // only 2 colors, but that should generally do.
            // Do not use nStepCount, it limits optimized implementations, and it's computed
            // by vclcanvas based on number of colors, so it's practically irrelevant.
 
            // 2 colors and 2 stops (at 0 and 1) is a linear gradient:
            if( rColors.size() == 2 && rValues.maStops.size() == 2 && rValues.maStops[0] == 0 && rValues.maStops[1] == 1)
            {
                // tdf#144073 and tdf#147645: use bounds and angle for gradient
                // Passing an expanded, rotated polygon noticeably modifies the
                // drawing of the gradient in a slideshow due to moving of the
                // starting and ending colors far off the edges of the drawing
                // surface. So try another way and set the angle of the
                // gradient and draw only the unadjusted bounds.
                Gradient vclGradient( css::awt::GradientStyle_LINEAR, rColors[ 0 ], rColors[ 1 ] );
                double fRotate = atan2( aDirection.getY(), aDirection.getX() );
                const double nAngleInTenthOfDegrees = 3600.0 - basegfx::rad2deg<10>( fRotate ) + 900.0;
                vclGradient.SetAngle( Degree10( ::basegfx::fround( nAngleInTenthOfDegrees ) ) );
                rOutDev.DrawGradient( rBounds, vclGradient );
                return;
            }
            // 3 colors with first and last being equal and 3 stops (at 0, 0.5 and 1) is an axial gradient:
            if( rColors.size() == 3 && rColors[ 0 ] == rColors[ 2 ]
                && rValues.maStops.size() == 3 && rValues.maStops[0] == 0
                && rValues.maStops[1] == 0.5 && rValues.maStops[2] == 1)
            {
                // tdf#144073 and tdf#147645: use bounds and angle for gradient
                // Passing an expanded, rotated polygon noticeably modifies the
                // drawing of the gradient in a slideshow due to moving of the
                // starting and ending colors far off the edges of the drawing
                // surface. So try another way and set the angle of the
                // gradient and draw only the unadjusted bounds.
                Gradient vclGradient( css::awt::GradientStyle_AXIAL, rColors[ 1 ], rColors[ 0 ] );
                double fRotate = atan2( aDirection.getY(), aDirection.getX() );
                const double nAngleInTenthOfDegrees = 3600.0 - basegfx::rad2deg<10>( fRotate ) + 900.0;
                vclGradient.SetAngle( Degree10( ::basegfx::fround( nAngleInTenthOfDegrees ) ) );
                rOutDev.DrawGradient( rBounds, vclGradient );
                return;
            }
 
            // for linear gradients, it's easy to render
            // non-overlapping polygons: just split the gradient into
            // nStepCount small strips. Prepare the strip now.
 
            // For performance reasons, we create a temporary VCL
            // polygon here, keep it all the way and only change the
            // vertex values in the loop below (as ::Polygon is a
            // pimpl class, creating one every loop turn would really
            // stress the mem allocator)
            ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );
 
            OSL_ENSURE( nStepCount >= 3,
                        "fillLinearGradient(): stepcount smaller than 3" );
 
 
            // fill initial strip (extending two times the bound rect's
            // diagonal to the 'left'
 
 
            // calculate left edge, by moving left edge of the
            // gradient rect two times the bound rect's diagonal to
            // the 'left'. Since we postpone actual rendering into the
            // loop below, we set the _right_ edge here, which will be
            // readily copied into the left edge in the loop below
            const ::basegfx::B2DPoint aPoint1( aLeftTop - 2.0*nDiagonalLength*aDirection );
            aTempPoly[1] = ::Point( ::basegfx::fround<::tools::Long>( aPoint1.getX() ),
                                    ::basegfx::fround<::tools::Long>( aPoint1.getY() ) );
 
            const ::basegfx::B2DPoint aPoint2( aLeftBottom - 2.0*nDiagonalLength*aDirection );
            aTempPoly[2] = ::Point( ::basegfx::fround<::tools::Long>( aPoint2.getX() ),
                                    ::basegfx::fround<::tools::Long>( aPoint2.getY() ) );
 
 
            // iteratively render all other strips
 
 
            // ensure that nStepCount matches color stop parity, to
            // have a well-defined middle color e.g. for axial
            // gradients.
            if( (rColors.size() % 2) != (nStepCount % 2) )
                ++nStepCount;
 
            rOutDev.SetLineColor();
 
            basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
 
            // only iterate nStepCount-1 steps, as the last strip is
            // explicitly painted below
            for( unsigned int i=0; i<nStepCount-1; ++i )
            {
                std::ptrdiff_t nIndex;
                double fAlpha;
                std::tie(nIndex,fAlpha)=aLerper.lerp(double(i)/nStepCount);
 
                rOutDev.SetFillColor(
                    Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
 
                // copy right edge of polygon to left edge (and also
                // copy the closing point)
                aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
                aTempPoly[3] = aTempPoly[2];
 
                // calculate new right edge, from interpolating
                // between start and end line. Note that i is
                // increased by one, to account for the fact that we
                // calculate the right border here (whereas the fill
                // color is governed by the left edge)
                const ::basegfx::B2DPoint aPoint3(
                    (nStepCount - i-1)/double(nStepCount)*aLeftTop +
                    (i+1)/double(nStepCount)*aRightTop );
                aTempPoly[1] = ::Point( ::basegfx::fround<::tools::Long>( aPoint3.getX() ),
                                        ::basegfx::fround<::tools::Long>( aPoint3.getY() ) );
 
                const ::basegfx::B2DPoint aPoint4(
                    (nStepCount - i-1)/double(nStepCount)*aLeftBottom +
                    (i+1)/double(nStepCount)*aRightBottom );
                aTempPoly[2] = ::Point( ::basegfx::fround<::tools::Long>( aPoint4.getX() ),
                                        ::basegfx::fround<::tools::Long>( aPoint4.getY() ) );
 
                rOutDev.DrawPolygon( aTempPoly );
            }
 
            // fill final strip (extending two times the bound rect's
            // diagonal to the 'right'
 
 
            // copy right edge of polygon to left edge (and also
            // copy the closing point)
            aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
            aTempPoly[3] = aTempPoly[2];
 
            // calculate new right edge, by moving right edge of the
            // gradient rect two times the bound rect's diagonal to
            // the 'right'.
            const ::basegfx::B2DPoint aPoint3( aRightTop + 2.0*nDiagonalLength*aDirection );
            aTempPoly[0] = aTempPoly[4] = ::Point( ::basegfx::fround<::tools::Long>( aPoint3.getX() ),
                                                   ::basegfx::fround<::tools::Long>( aPoint3.getY() ) );
 
            const ::basegfx::B2DPoint aPoint4( aRightBottom + 2.0*nDiagonalLength*aDirection );
            aTempPoly[3] = ::Point( ::basegfx::fround<::tools::Long>( aPoint4.getX() ),
                                    ::basegfx::fround<::tools::Long>( aPoint4.getY() ) );
 
            rOutDev.SetFillColor( rColors.back() );
 
            rOutDev.DrawPolygon( aTempPoly );
        }
 
        void fillPolygonalGradient( OutputDevice&                                  rOutDev,
                                    const ::basegfx::B2DHomMatrix&                 rTextureTransform,
                                    const ::tools::Rectangle&                             rBounds,
                                    unsigned int                                   nStepCount,
                                    const ::canvas::ParametricPolyPolygon::Values& rValues,
                                    const std::vector< ::Color >&                  rColors )
        {
            const ::basegfx::B2DPolygon& rGradientPoly( rValues.maGradientPoly );
 
            ENSURE_OR_THROW( rGradientPoly.count() > 2,
                              "fillPolygonalGradient(): polygon without area given" );
 
            // For performance reasons, we create a temporary VCL polygon
            // here, keep it all the way and only change the vertex values
            // in the loop below (as ::Polygon is a pimpl class, creating
            // one every loop turn would really stress the mem allocator)
            ::basegfx::B2DPolygon   aOuterPoly( rGradientPoly );
            ::basegfx::B2DPolygon   aInnerPoly;
 
            // subdivide polygon _before_ rendering, would otherwise have
            // to be performed on every loop turn.
            if( aOuterPoly.areControlPointsUsed() )
                aOuterPoly = ::basegfx::utils::adaptiveSubdivideByAngle(aOuterPoly);
 
            aInnerPoly = aOuterPoly;
 
            // only transform outer polygon _after_ copying it into
            // aInnerPoly, because inner polygon has to be scaled before
            // the actual texture transformation takes place
            aOuterPoly.transform( rTextureTransform );
 
            // determine overall transformation for inner polygon (might
            // have to be prefixed by anisotrophic scaling)
            ::basegfx::B2DHomMatrix aInnerPolygonTransformMatrix;
 
 
            // apply scaling (possibly anisotrophic) to inner polygon
 
 
            // scale inner polygon according to aspect ratio: for
            // wider-than-tall bounds (nAspectRatio > 1.0), the inner
            // polygon, representing the gradient focus, must have
            // non-zero width. Specifically, a bound rect twice as wide as
            // tall has a focus polygon of half its width.
            const double nAspectRatio( rValues.mnAspectRatio );
            if( nAspectRatio > 1.0 )
            {
                // width > height case
                aInnerPolygonTransformMatrix.scale( 1.0 - 1.0/nAspectRatio,
                                                    0.0 );
            }
            else if( nAspectRatio < 1.0 )
            {
                // width < height case
                aInnerPolygonTransformMatrix.scale( 0.0,
                                                    1.0 - nAspectRatio );
            }
            else
            {
                // isotrophic case
                aInnerPolygonTransformMatrix.scale( 0.0, 0.0 );
            }
 
            // and finally, add texture transform to it.
            aInnerPolygonTransformMatrix *= rTextureTransform;
 
            // apply final matrix to polygon
            aInnerPoly.transform( aInnerPolygonTransformMatrix );
 
 
            const sal_uInt32 nNumPoints( aOuterPoly.count() );
            ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(nNumPoints+1) );
 
            // increase number of steps by one: polygonal gradients have
            // the outermost polygon rendered in rColor2, and the
            // innermost in rColor1. The innermost polygon will never
            // have zero area, thus, we must divide the interval into
            // nStepCount+1 steps. For example, to create 3 steps:
 
            // |                       |
            // |-------|-------|-------|
            // |                       |
            // 3       2       1       0
 
            // This yields 4 tick marks, where 0 is never attained (since
            // zero-area polygons typically don't display perceivable
            // color).
            ++nStepCount;
 
            rOutDev.SetLineColor();
 
            basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
 
            // fill background
            rOutDev.SetFillColor( rColors.front() );
            rOutDev.DrawRect( rBounds );
 
            // render polygon
            // ==============
 
            for( unsigned int i=1,p; i<nStepCount; ++i )
            {
                const double fT( i/double(nStepCount) );
 
                std::ptrdiff_t nIndex;
                double fAlpha;
                std::tie(nIndex,fAlpha)=aLerper.lerp(fT);
 
                // lerp color
                rOutDev.SetFillColor(
                    Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
 
                // scale and render polygon, by interpolating between
                // outer and inner polygon.
 
                for( p=0; p<nNumPoints; ++p )
                {
                    const ::basegfx::B2DPoint& rOuterPoint( aOuterPoly.getB2DPoint(p) );
                    const ::basegfx::B2DPoint& rInnerPoint( aInnerPoly.getB2DPoint(p) );
 
                    aTempPoly[static_cast<sal_uInt16>(p)] = ::Point(
                        basegfx::fround<::tools::Long>( fT*rInnerPoint.getX() + (1-fT)*rOuterPoint.getX() ),
                        basegfx::fround<::tools::Long>( fT*rInnerPoint.getY() + (1-fT)*rOuterPoint.getY() ) );
                }
 
                // close polygon explicitly
                aTempPoly[static_cast<sal_uInt16>(p)] = aTempPoly[0];
 
                // TODO(P1): compare with vcl/source/gdi/outdev4.cxx,
                // OutputDevice::ImplDrawComplexGradient(), there's a note
                // that on some VDev's, rendering disjunct poly-polygons
                // is faster!
                rOutDev.DrawPolygon( aTempPoly );
            }
        }
 
        void doGradientFill( OutputDevice&                                  rOutDev,
                             const ::canvas::ParametricPolyPolygon::Values& rValues,
                             const std::vector< ::Color >&                  rColors,
                             const ::basegfx::B2DHomMatrix&                 rTextureTransform,
                             const ::tools::Rectangle&                      rBounds,
                             unsigned int                                   nStepCount )
        {
            switch( rValues.meType )
            {
                case ::canvas::ParametricPolyPolygon::GradientType::Linear:
                    fillLinearGradient( rOutDev,
                                        rTextureTransform,
                                        rBounds,
                                        nStepCount,
                                        rValues,
                                        rColors );
                    break;
 
                case ::canvas::ParametricPolyPolygon::GradientType::Elliptical:
                case ::canvas::ParametricPolyPolygon::GradientType::Rectangular:
                    fillPolygonalGradient( rOutDev,
                                           rTextureTransform,
                                           rBounds,
                                           nStepCount,
                                           rValues,
                                           rColors );
                    break;
 
                default:
                    ENSURE_OR_THROW( false,
                                      "CanvasHelper::doGradientFill(): Unexpected case" );
            }
        }
 
        int numColorSteps( const ::Color& rColor1, const ::Color& rColor2 )
        {
            return std::max(
                std::abs( rColor1.GetRed() - rColor2.GetRed() ),
                std::max(
                    std::abs( rColor1.GetGreen() - rColor2.GetGreen() ),
                    std::abs( rColor1.GetBlue()  - rColor2.GetBlue() ) ) );
        }
 
        bool gradientFill( OutputDevice&                                   rOutDev,
                           OutputDevice*                                   p2ndOutDev,
                           const ::canvas::ParametricPolyPolygon::Values&  rValues,
                           const std::vector< ::Color >&                   rColors,
                           const ::tools::PolyPolygon&                     rPoly,
                           const rendering::ViewState&                     viewState,
                           const rendering::RenderState&                   renderState,
                           const rendering::Texture&                       texture,
                           int                                             nTransparency )
        {
            // TODO(T2): It is maybe necessary to lock here, should
            // maGradientPoly someday cease to be const. But then, beware of
            // deadlocks, canvashelper calls this method with locked own
            // mutex.
 
            // calc step size
 
            int nColorSteps = 0;
            for( size_t i=0; i<rColors.size()-1; ++i )
                nColorSteps += numColorSteps(rColors[i],rColors[i+1]);
 
            ::basegfx::B2DHomMatrix aTotalTransform;
            const int nStepCount=
                ::canvas::tools::calcGradientStepCount(aTotalTransform,
                                                       viewState,
                                                       renderState,
                                                       texture,
                                                       nColorSteps);
 
            rOutDev.SetLineColor();
 
            // determine maximal bound rect of texture-filled
            // polygon
            const ::tools::Rectangle aPolygonDeviceRectOrig(
                rPoly.GetBoundRect() );
 
            if( tools::isRectangle( rPoly ) )
            {
                // use optimized output path
 
 
                // this distinction really looks like a
                // micro-optimization, but in fact greatly speeds up
                // especially complex gradients. That's because when using
                // clipping, we can output polygons instead of
                // poly-polygons, and don't have to output the gradient
                // twice for XOR
 
                rOutDev.Push( vcl::PushFlags::CLIPREGION );
                rOutDev.IntersectClipRegion( aPolygonDeviceRectOrig );
                doGradientFill( rOutDev,
                                rValues,
                                rColors,
                                aTotalTransform,
                                aPolygonDeviceRectOrig,
                                nStepCount );
                rOutDev.Pop();
 
                if( p2ndOutDev && nTransparency < 253 )
                {
                    // HACK. Normally, CanvasHelper does not care about
                    // actually what mp2ndOutDev is...  well, here we do &
                    // assume a 1bpp target - everything beyond 97%
                    // transparency is fully transparent
                    p2ndOutDev->SetFillColor( COL_BLACK );
                    p2ndOutDev->DrawRect( aPolygonDeviceRectOrig );
                }
            }
            else
            {
                const vcl::Region aPolyClipRegion( rPoly );
 
                rOutDev.Push( vcl::PushFlags::CLIPREGION );
                rOutDev.IntersectClipRegion( aPolyClipRegion );
 
                doGradientFill( rOutDev,
                                rValues,
                                rColors,
                                aTotalTransform,
                                aPolygonDeviceRectOrig,
                                nStepCount );
                rOutDev.Pop();
 
                if( p2ndOutDev && nTransparency < 253 )
                {
                    // HACK. Normally, CanvasHelper does not care about
                    // actually what mp2ndOutDev is...  well, here we do &
                    // assume a 1bpp target - everything beyond 97%
                    // transparency is fully transparent
                    p2ndOutDev->SetFillColor( COL_BLACK );
                    p2ndOutDev->DrawPolyPolygon( rPoly );
                }
            }
 
#ifdef DEBUG_CANVAS_CANVASHELPER_TEXTUREFILL
            // extra-verbosity
            {
                ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
                ::basegfx::B2DRectangle aTextureDeviceRect;
                ::basegfx::B2DHomMatrix aTextureTransform;
                ::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
                                                            aRect,
                                                            aTextureTransform );
                rOutDev.SetLineColor( COL_RED );
                rOutDev.SetFillColor();
                rOutDev.DrawRect( vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
 
                rOutDev.SetLineColor( COL_BLUE );
                ::tools::Polygon aPoly1(
                    vcl::unotools::rectangleFromB2DRectangle( aRect ));
                ::basegfx::B2DPolygon aPoly2( aPoly1.getB2DPolygon() );
                aPoly2.transform( aTextureTransform );
                ::tools::Polygon aPoly3( aPoly2 );
                rOutDev.DrawPolygon( aPoly3 );
            }
#endif
 
            return true;
        }
    }
 
    uno::Reference< rendering::XCachedPrimitive > CanvasHelper::fillTexturedPolyPolygon( const rendering::XCanvas*                          pCanvas,
                                                                                         const uno::Reference< rendering::XPolyPolygon2D >& xPolyPolygon,
                                                                                         const rendering::ViewState&                        viewState,
                                                                                         const rendering::RenderState&                      renderState,
                                                                                         const uno::Sequence< rendering::Texture >&         textures )
    {
        ENSURE_ARG_OR_THROW( xPolyPolygon.is(),
                         "CanvasHelper::fillPolyPolygon(): polygon is NULL");
        ENSURE_ARG_OR_THROW( textures.hasElements(),
                         "CanvasHelper::fillTexturedPolyPolygon: empty texture sequence");
 
        if( mpOutDevProvider )
        {
            tools::OutDevStateKeeper aStateKeeper( mpProtectedOutDevProvider );
 
            const int nTransparency( setupOutDevState( viewState, renderState, IGNORE_COLOR ) );
            ::tools::PolyPolygon aPolyPoly( tools::mapPolyPolygon(
                                       ::basegfx::unotools::b2DPolyPolygonFromXPolyPolygon2D(xPolyPolygon),
                                       viewState, renderState ) );
 
            // TODO(F1): Multi-texturing
            if( textures[0].Gradient.is() )
            {
                // try to cast XParametricPolyPolygon2D reference to
                // our implementation class.
                ::canvas::ParametricPolyPolygon* pGradient =
                      dynamic_cast< ::canvas::ParametricPolyPolygon* >( textures[0].Gradient.get() );
 
                if( pGradient && pGradient->getValues().maColors.hasElements() )
                {
                    // copy state from Gradient polypoly locally
                    // (given object might change!)
                    const ::canvas::ParametricPolyPolygon::Values aValues(
                        pGradient->getValues() );
 
                    if( aValues.maColors.getLength() < 2 )
                    {
                        rendering::RenderState aTempState=renderState;
                        aTempState.DeviceColor = aValues.maColors[0];
                        fillPolyPolygon(pCanvas, xPolyPolygon, viewState, aTempState);
                    }
                    else
                    {
                        std::vector< ::Color > aColors(aValues.maColors.getLength());
                        std::transform(&aValues.maColors[0],
                                       &aValues.maColors[0]+aValues.maColors.getLength(),
                                       aColors.begin(),
                                       [](const uno::Sequence< double >& aColor) {
                                           return vcl::unotools::stdColorSpaceSequenceToColor( aColor );
                                       } );
 
                        // TODO(E1): Return value
                        // TODO(F1): FillRule
                        gradientFill( mpOutDevProvider->getOutDev(),
                                      mp2ndOutDevProvider ? &mp2ndOutDevProvider->getOutDev() : nullptr,
                                      aValues,
                                      aColors,
                                      aPolyPoly,
                                      viewState,
                                      renderState,
                                      textures[0],
                                      nTransparency );
                    }
                }
                else
                {
                    // TODO(F1): The generic case is missing here
                    ENSURE_OR_THROW( false,
                                      "CanvasHelper::fillTexturedPolyPolygon(): unknown parametric polygon encountered" );
                }
            }
            else if( textures[0].Bitmap.is() )
            {
                geometry::IntegerSize2D aBmpSize( textures[0].Bitmap->getSize() );
 
                ENSURE_ARG_OR_THROW( aBmpSize.Width != 0 &&
                                 aBmpSize.Height != 0,
                                 "CanvasHelper::fillTexturedPolyPolygon(): zero-sized texture bitmap" );
 
                // determine maximal bound rect of texture-filled
                // polygon
                const ::tools::Rectangle aPolygonDeviceRect(
                    aPolyPoly.GetBoundRect() );
 
 
                // first of all, determine whether we have a
                // drawBitmap() in disguise
                // =========================================
 
                const bool bRectangularPolygon( tools::isRectangle( aPolyPoly ) );
 
                ::basegfx::B2DHomMatrix aTotalTransform;
                ::canvas::tools::mergeViewAndRenderTransform(aTotalTransform,
                                                             viewState,
                                                             renderState);
                ::basegfx::B2DHomMatrix aTextureTransform;
                ::basegfx::unotools::homMatrixFromAffineMatrix( aTextureTransform,
                                                                textures[0].AffineTransform );
 
                aTotalTransform *= aTextureTransform;
 
                const ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
                ::basegfx::B2DRectangle aTextureDeviceRect;
                ::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
                                                            aRect,
                                                            aTotalTransform );
 
                const ::tools::Rectangle aIntegerTextureDeviceRect(
                    vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
 
                if( bRectangularPolygon &&
                    aIntegerTextureDeviceRect == aPolygonDeviceRect )
                {
                    rendering::RenderState aLocalState( renderState );
                    ::canvas::tools::appendToRenderState(aLocalState,
                                                         aTextureTransform);
                    ::basegfx::B2DHomMatrix aScaleCorrection;
                    aScaleCorrection.scale( 1.0/aBmpSize.Width,
                                            1.0/aBmpSize.Height );
                    ::canvas::tools::appendToRenderState(aLocalState,
                                                         aScaleCorrection);
 
                    // need alpha modulation?
                    if( !::rtl::math::approxEqual( textures[0].Alpha,
                                                   1.0 ) )
                    {
                        // setup alpha modulation values
                        aLocalState.DeviceColor.realloc(4);
                        double* pColor = aLocalState.DeviceColor.getArray();
                        pColor[0] =
                        pColor[1] =
                        pColor[2] = 0.0;
                        pColor[3] = textures[0].Alpha;
 
                        return drawBitmapModulated( pCanvas,
                                                    textures[0].Bitmap,
                                                    viewState,
                                                    aLocalState );
                    }
                    else
                    {
                        return drawBitmap( pCanvas,
                                           textures[0].Bitmap,
                                           viewState,
                                           aLocalState );
                    }
                }
                else
                {
                    // No easy mapping to drawBitmap() - calculate
                    // texturing parameters
                    // ===========================================
 
                    BitmapEx aBmpEx( tools::bitmapExFromXBitmap( textures[0].Bitmap ) );
 
                    // scale down bitmap to [0,1]x[0,1] rect, as required
                    // from the XCanvas interface.
                    ::basegfx::B2DHomMatrix aScaling;
                    ::basegfx::B2DHomMatrix aPureTotalTransform; // pure view*render*texture transform
                    aScaling.scale( 1.0/aBmpSize.Width,
                                    1.0/aBmpSize.Height );
 
                    aTotalTransform = aTextureTransform * aScaling;
                    aPureTotalTransform = aTextureTransform;
 
                    // combine with view and render transform
                    ::basegfx::B2DHomMatrix aMatrix;
                    ::canvas::tools::mergeViewAndRenderTransform(aMatrix, viewState, renderState);
 
                    // combine all three transformations into one
                    // global texture-to-device-space transformation
                    aTotalTransform *= aMatrix;
                    aPureTotalTransform *= aMatrix;
 
                    // analyze transformation, and setup an
                    // appropriate GraphicObject
                    ::basegfx::B2DVector aScale;
                    ::basegfx::B2DPoint  aOutputPos;
                    double               nRotate;
                    double               nShearX;
                    aTotalTransform.decompose( aScale, aOutputPos, nRotate, nShearX );
 
                    GraphicAttr             aGrfAttr;
                    GraphicObjectSharedPtr  pGrfObj;
 
                    if( ::basegfx::fTools::equalZero( nShearX ) )
                    {
                        // no shear, GraphicObject is enough (the
                        // GraphicObject only supports scaling, rotation
                        // and translation)
 
                        // #i75339# don't apply mirror flags, having
                        // negative size values is enough to make
                        // GraphicObject flip the bitmap
 
                        // The angle has to be mapped from radian to tenths of
                        // degrees with the orientation reversed: [0,2Pi) ->
                        // (3600,0].  Note that the original angle may have
                        // values outside the [0,2Pi) interval.
                        const double nAngleInTenthOfDegrees (3600.0 - basegfx::rad2deg<10>(nRotate));
                        aGrfAttr.SetRotation( Degree10(::basegfx::fround(nAngleInTenthOfDegrees)) );
 
                        pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
                    }
                    else
                    {
                        // modify output position, to account for the fact
                        // that transformBitmap() always normalizes its output
                        // bitmap into the smallest enclosing box.
                        ::basegfx::B2DRectangle aDestRect;
                        ::canvas::tools::calcTransformedRectBounds( aDestRect,
                                                                    ::basegfx::B2DRectangle(0,
                                                                                            0,
                                                                                            aBmpSize.Width,
                                                                                            aBmpSize.Height),
                                                                    aMatrix );
 
                        aOutputPos.setX( aDestRect.getMinX() );
                        aOutputPos.setY( aDestRect.getMinY() );
 
                        // complex transformation, use generic affine bitmap
                        // transformation
                        aBmpEx = tools::transformBitmap( aBmpEx,
                                                         aTotalTransform);
 
                        pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
 
                        // clear scale values, generated bitmap already
                        // contains scaling
                        aScale.setX( 1.0 ); aScale.setY( 1.0 );
 
                        // update bitmap size, bitmap has changed above.
                        aBmpSize = vcl::unotools::integerSize2DFromSize(aBmpEx.GetSizePixel());
                    }
 
 
                    // render texture tiled into polygon
                    // =================================
 
                    // calc device space direction vectors. We employ
                    // the following approach for tiled output: the
                    // texture bitmap is output in texture space
                    // x-major order, i.e. tile neighbors in texture
                    // space x direction are rendered back-to-back in
                    // device coordinate space (after the full device
                    // transformation). Thus, the aNextTile* vectors
                    // denote the output position updates in device
                    // space, to get from one tile to the next.
                    ::basegfx::B2DVector aNextTileX( 1.0, 0.0 );
                    ::basegfx::B2DVector aNextTileY( 0.0, 1.0 );
                    aNextTileX *= aPureTotalTransform;
                    aNextTileY *= aPureTotalTransform;
 
                    ::basegfx::B2DHomMatrix aInverseTextureTransform( aPureTotalTransform );
 
                    ENSURE_ARG_OR_THROW( aInverseTextureTransform.isInvertible(),
                                     "CanvasHelper::fillTexturedPolyPolygon(): singular texture matrix" );
 
                    aInverseTextureTransform.invert();
 
                    // calc bound rect of extended texture area in
                    // device coordinates. Therefore, we first calc
                    // the area of the polygon bound rect in texture
                    // space. To maintain texture phase, this bound
                    // rect is then extended to integer coordinates
                    // (extended, because shrinking might leave some
                    // inner polygon areas unfilled).
                    // Finally, the bound rect is transformed back to
                    // device coordinate space, were we determine the
                    // start point from it.
                    ::basegfx::B2DRectangle aTextureSpacePolygonRect;
                    ::canvas::tools::calcTransformedRectBounds( aTextureSpacePolygonRect,
                                                                vcl::unotools::b2DRectangleFromRectangle(aPolygonDeviceRect),
                                                                aInverseTextureTransform );
 
                    // calc left, top of extended polygon rect in
                    // texture space, create one-texture instance rect
                    // from it (i.e. rect from start point extending
                    // 1.0 units to the right and 1.0 units to the
                    // bottom). Note that the rounding employed here
                    // is a bit subtle, since we need to round up/down
                    // as _soon_ as any fractional amount is
                    // encountered. This is to ensure that the full
                    // polygon area is filled with texture tiles.
                    const sal_Int32 nX1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinX() ) );
                    const sal_Int32 nY1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinY() ) );
                    const sal_Int32 nX2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxX() ) );
                    const sal_Int32 nY2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxY() ) );
                    const ::basegfx::B2DRectangle aSingleTextureRect(
                        nX1, nY1,
                        nX1 + 1.0,
                        nY1 + 1.0 );
 
                    // and convert back to device space
                    ::basegfx::B2DRectangle aSingleDeviceTextureRect;
                    ::canvas::tools::calcTransformedRectBounds( aSingleDeviceTextureRect,
                                                                aSingleTextureRect,
                                                                aPureTotalTransform );
 
                    const ::Point aPtRepeat( vcl::unotools::pointFromB2DPoint(
                                                 aSingleDeviceTextureRect.getMinimum() ) );
                    const ::Size  aSz( ::basegfx::fround<::tools::Long>( aScale.getX() * aBmpSize.Width ),
                                       ::basegfx::fround<::tools::Long>( aScale.getY() * aBmpSize.Height ) );
                    const ::Size  aIntegerNextTileX( vcl::unotools::sizeFromB2DSize(aNextTileX) );
                    const ::Size  aIntegerNextTileY( vcl::unotools::sizeFromB2DSize(aNextTileY) );
 
                    const ::Point aPt( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
                                       ::basegfx::fround<::tools::Long>( aOutputPos.getX() ) : aPtRepeat.X(),
                                       textures[0].RepeatModeY == rendering::TexturingMode::NONE ?
                                       ::basegfx::fround<::tools::Long>( aOutputPos.getY() ) : aPtRepeat.Y() );
                    const sal_Int32 nTilesX( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
                                             1 : nX2 - nX1 );
                    const sal_Int32 nTilesY( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
                                             1 : nY2 - nY1 );
 
                    OutputDevice& rOutDev( mpOutDevProvider->getOutDev() );
 
                    if( bRectangularPolygon )
                    {
                        // use optimized output path
 
 
                        // this distinction really looks like a
                        // micro-optimization, but in fact greatly speeds up
                        // especially complex fills. That's because when using
                        // clipping, we can output polygons instead of
                        // poly-polygons, and don't have to output the gradient
                        // twice for XOR
 
                        // setup alpha modulation
                        if( !::rtl::math::approxEqual( textures[0].Alpha,
                                                       1.0 ) )
                        {
                            // TODO(F1): Note that the GraphicManager has
                            // a subtle difference in how it calculates
                            // the resulting alpha value: it's using the
                            // inverse alpha values (i.e. 'transparency'),
                            // and calculates transOrig + transModulate,
                            // instead of transOrig + transModulate -
                            // transOrig*transModulate (which would be
                            // equivalent to the origAlpha*modulateAlpha
                            // the DX canvas performs)
                            aGrfAttr.SetAlpha(
                                static_cast< sal_uInt8 >(
                                    ::basegfx::fround( 255.0 * textures[0].Alpha ) ) );
                        }
 
                        rOutDev.IntersectClipRegion( aPolygonDeviceRect );
                        textureFill( rOutDev,
                                     *pGrfObj,
                                     aPt,
                                     aIntegerNextTileX,
                                     aIntegerNextTileY,
                                     nTilesX,
                                     nTilesY,
                                     aSz,
                                     aGrfAttr );
 
                        if( mp2ndOutDevProvider )
                        {
                            OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
                            r2ndOutDev.IntersectClipRegion( aPolygonDeviceRect );
                            textureFill( r2ndOutDev,
                                         *pGrfObj,
                                         aPt,
                                         aIntegerNextTileX,
                                         aIntegerNextTileY,
                                         nTilesX,
                                         nTilesY,
                                         aSz,
                                         aGrfAttr );
                        }
                    }
                    else
                    {
                        // output texture the hard way: XORing out the
                        // polygon
                        // ===========================================
 
                        if( !::rtl::math::approxEqual( textures[0].Alpha,
                                                       1.0 ) )
                        {
                            // uh-oh. alpha blending is required,
                            // cannot do direct XOR, but have to
                            // prepare the filled polygon within a
                            // VDev
                            ScopedVclPtrInstance< VirtualDevice > pVDev( rOutDev );
                            pVDev->SetOutputSizePixel( aPolygonDeviceRect.GetSize() );
 
                            // shift output to origin of VDev
                            const ::Point aOutPos( aPt - aPolygonDeviceRect.TopLeft() );
                            aPolyPoly.Translate( ::Point( -aPolygonDeviceRect.Left(),
                                                          -aPolygonDeviceRect.Top() ) );
 
                            const vcl::Region aPolyClipRegion( aPolyPoly );
 
                            pVDev->SetClipRegion( aPolyClipRegion );
                            textureFill( *pVDev,
                                         *pGrfObj,
                                         aOutPos,
                                         aIntegerNextTileX,
                                         aIntegerNextTileY,
                                         nTilesX,
                                         nTilesY,
                                         aSz,
                                         aGrfAttr );
 
                            // output VDev content alpha-blended to
                            // target position.
                            const ::Point aEmptyPoint;
                            BitmapEx aContentBmp(
                                pVDev->GetBitmapEx( aEmptyPoint,
                                                 pVDev->GetOutputSizePixel() ) );
 
                            sal_uInt8 nCol( static_cast< sal_uInt8 >(
                                           ::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
                            AlphaMask aAlpha( pVDev->GetOutputSizePixel(),
                                              &nCol );
 
                            BitmapEx aOutputBmpEx( aContentBmp.GetBitmap(), aAlpha );
                            rOutDev.DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
                                                  aOutputBmpEx );
 
                            if( mp2ndOutDevProvider )
                                mp2ndOutDevProvider->getOutDev().DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
                                                                       aOutputBmpEx );
                        }
                        else
                        {
                            const vcl::Region aPolyClipRegion( aPolyPoly );
 
                            rOutDev.Push( vcl::PushFlags::CLIPREGION );
                            rOutDev.IntersectClipRegion( aPolyClipRegion );
 
                            textureFill( rOutDev,
                                         *pGrfObj,
                                         aPt,
                                         aIntegerNextTileX,
                                         aIntegerNextTileY,
                                         nTilesX,
                                         nTilesY,
                                         aSz,
                                         aGrfAttr );
                            rOutDev.Pop();
 
                            if( mp2ndOutDevProvider )
                            {
                                OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
                                r2ndOutDev.Push( vcl::PushFlags::CLIPREGION );
 
                                r2ndOutDev.IntersectClipRegion( aPolyClipRegion );
                                textureFill( r2ndOutDev,
                                             *pGrfObj,
                                             aPt,
                                             aIntegerNextTileX,
                                             aIntegerNextTileY,
                                             nTilesX,
                                             nTilesY,
                                             aSz,
                                             aGrfAttr );
                                r2ndOutDev.Pop();
                            }
                        }
                    }
                }
            }
        }
 
        // TODO(P1): Provide caching here.
        return uno::Reference< rendering::XCachedPrimitive >(nullptr);
    }
 
}
 
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */

V530 The return value of function 'normalize' is required to be utilized.

V530 The return value of function 'mergeViewAndRenderTransform' is required to be utilized.

V530 The return value of function 'homMatrixFromAffineMatrix' is required to be utilized.

V530 The return value of function 'calcTransformedRectBounds' is required to be utilized.

V530 The return value of function 'mergeViewAndRenderTransform' is required to be utilized.

V530 The return value of function 'calcTransformedRectBounds' is required to be utilized.

V530 The return value of function 'calcTransformedRectBounds' is required to be utilized.

V530 The return value of function 'calcTransformedRectBounds' is required to be utilized.