/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <string.h>
#include <stdlib.h>
#include <sal/types.h>
#include <osl/endian.h>
#include <rtl/alloc.h>
#include <rtl/digest.h>
#define RTL_DIGEST_CREATE(T) (static_cast<T*>(rtl_allocateZeroMemory(sizeof(T))))
#define RTL_DIGEST_ROTL(a,n) (((a) << (n)) | ((a) >> (32 - (n))))
#define RTL_DIGEST_HTONL(l,c) \
(*((c)++) = static_cast<sal_uInt8>(((l) >> 24) & 0xff), \
*((c)++) = static_cast<sal_uInt8>(((l) >> 16) & 0xff), \
*((c)++) = static_cast<sal_uInt8>(((l) >> 8) & 0xff), \
*((c)++) = static_cast<sal_uInt8>(((l) ) & 0xff))
#define RTL_DIGEST_LTOC(l,c) \
*((c)++) = static_cast<sal_uInt8>(((l) ) & 0xff); \
*((c)++) = static_cast<sal_uInt8>(((l) >> 8) & 0xff); \
*((c)++) = static_cast<sal_uInt8>(((l) >> 16) & 0xff); \
*((c)++) = static_cast<sal_uInt8>(((l) >> 24) & 0xff);
typedef rtlDigestError (Digest_init_t) (
void *ctx, const sal_uInt8 *Data, sal_uInt32 DatLen);
typedef void (Digest_delete_t) (void *ctx);
typedef rtlDigestError (Digest_update_t) (
void *ctx, const void *Data, sal_uInt32 DatLen);
typedef rtlDigestError (Digest_get_t) (
void *ctx, sal_uInt8 *Buffer, sal_uInt32 BufLen);
namespace {
struct Digest_Impl
{
rtlDigestAlgorithm m_algorithm;
sal_uInt32 m_length;
Digest_init_t *m_init;
Digest_delete_t *m_delete;
Digest_update_t *m_update;
Digest_get_t *m_get;
};
}
static void swapLong(sal_uInt32 *pData, sal_uInt32 nDatLen)
{
sal_uInt32 *X;
int i, n;
X = pData;
n = nDatLen;
for (i = 0; i < n; i++)
{
X[i] = OSL_SWAPDWORD(X[i]);
}
}
rtlDigest SAL_CALL rtl_digest_create(rtlDigestAlgorithm Algorithm) noexcept
{
rtlDigest Digest = nullptr;
switch (Algorithm)
{
case rtl_Digest_AlgorithmMD2:
Digest = rtl_digest_createMD2();
break;
case rtl_Digest_AlgorithmMD5:
Digest = rtl_digest_createMD5();
break;
case rtl_Digest_AlgorithmSHA:
Digest = rtl_digest_createSHA();
break;
case rtl_Digest_AlgorithmSHA1:
Digest = rtl_digest_createSHA1();
break;
case rtl_Digest_AlgorithmHMAC_MD5:
Digest = rtl_digest_createHMAC_MD5();
break;
case rtl_Digest_AlgorithmHMAC_SHA1:
Digest = rtl_digest_createHMAC_SHA1();
break;
default: /* rtl_Digest_AlgorithmInvalid */
break;
}
return Digest;
}
rtlDigestAlgorithm SAL_CALL rtl_digest_queryAlgorithm(rtlDigest Digest) noexcept
{
Digest_Impl *pImpl = static_cast<Digest_Impl *>(Digest);
if (pImpl)
return pImpl->m_algorithm;
return rtl_Digest_AlgorithmInvalid;
}
sal_uInt32 SAL_CALL rtl_digest_queryLength(rtlDigest Digest) noexcept
{
Digest_Impl *pImpl = static_cast<Digest_Impl *>(Digest);
if (pImpl)
return pImpl->m_length;
return 0;
}
rtlDigestError SAL_CALL rtl_digest_init(
rtlDigest Digest, const sal_uInt8 *pData, sal_uInt32 nDatLen) noexcept
{
Digest_Impl *pImpl = static_cast<Digest_Impl *>(Digest);
if (pImpl)
{
if (pImpl->m_init)
return pImpl->m_init (Digest, pData, nDatLen);
return rtl_Digest_E_None;
}
return rtl_Digest_E_Argument;
}
rtlDigestError SAL_CALL rtl_digest_update(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
Digest_Impl *pImpl = static_cast<Digest_Impl *>(Digest);
if (pImpl && pImpl->m_update)
return pImpl->m_update(Digest, pData, nDatLen);
return rtl_Digest_E_Argument;
}
rtlDigestError SAL_CALL rtl_digest_get(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
Digest_Impl *pImpl = static_cast<Digest_Impl *>(Digest);
if (pImpl && pImpl->m_get)
return pImpl->m_get(Digest, pBuffer, nBufLen);
return rtl_Digest_E_Argument;
}
void SAL_CALL rtl_digest_destroy(rtlDigest Digest) noexcept
{
Digest_Impl *pImpl = static_cast<Digest_Impl *>(Digest);
if (pImpl && pImpl->m_delete)
pImpl->m_delete(Digest);
}
constexpr auto DIGEST_CBLOCK_MD2 = 16;
constexpr auto DIGEST_LBLOCK_MD2 = 16;
namespace {
struct DigestContextMD2
{
sal_uInt32 m_nDatLen;
sal_uInt8 m_pData[DIGEST_CBLOCK_MD2];
sal_uInt32 m_state[DIGEST_LBLOCK_MD2];
sal_uInt32 m_chksum[DIGEST_LBLOCK_MD2];
};
struct DigestMD2_Impl
{
Digest_Impl m_digest;
DigestContextMD2 m_context;
};
}
static void initMD2 (DigestContextMD2 *ctx);
static void updateMD2 (DigestContextMD2 *ctx);
static void endMD2 (DigestContextMD2 *ctx);
const sal_uInt32 S[256] =
{
0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01,
0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13,
0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C,
0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA,
0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16,
0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12,
0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49,
0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A,
0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F,
0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21,
0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27,
0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03,
0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1,
0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6,
0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6,
0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1,
0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20,
0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02,
0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6,
0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F,
0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A,
0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26,
0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09,
0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52,
0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA,
0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A,
0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D,
0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39,
0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4,
0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A,
0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A,
0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14,
};
const Digest_Impl MD2 =
{
rtl_Digest_AlgorithmMD2,
RTL_DIGEST_LENGTH_MD2,
nullptr,
rtl_digest_destroyMD2,
rtl_digest_updateMD2,
rtl_digest_getMD2
};
static void initMD2(DigestContextMD2 *ctx)
{
memset(ctx, 0, sizeof(DigestContextMD2));
}
static void updateMD2(DigestContextMD2 *ctx)
{
sal_uInt8 *X;
sal_uInt32 *sp1, *sp2;
sal_uInt32 i, k, t;
sal_uInt32 state[48];
X = ctx->m_pData;
sp1 = ctx->m_state;
sp2 = ctx->m_chksum;
k = sp2[DIGEST_LBLOCK_MD2 - 1];
for (i = 0; i < 16; i++)
{
state[i + 0] = sp1[i];
state[i + 16] = t = X[i];
state[i + 32] = t ^ sp1[i];
k = sp2[i] ^= S[t^k];
}
t = 0;
for (i = 0; i < 18; i++)
{
for (k = 0; k < 48; k += 8)
{
t = state[k + 0] ^= S[t];
t = state[k + 1] ^= S[t];
t = state[k + 2] ^= S[t];
t = state[k + 3] ^= S[t];
t = state[k + 4] ^= S[t];
t = state[k + 5] ^= S[t];
t = state[k + 6] ^= S[t];
t = state[k + 7] ^= S[t];
}
t = ((t + i) & 0xff);
}
memcpy(sp1, state, 16 * sizeof(sal_uInt32));
rtl_secureZeroMemory(state, 48 * sizeof(sal_uInt32));
}
static void endMD2(DigestContextMD2 *ctx)
{
sal_uInt8 *X;
sal_uInt32 *C;
sal_uInt32 i, n;
X = ctx->m_pData;
C = ctx->m_chksum;
n = DIGEST_CBLOCK_MD2 - ctx->m_nDatLen;
for (i = ctx->m_nDatLen; i < DIGEST_CBLOCK_MD2; i++)
X[i] = static_cast<sal_uInt8>(n & 0xff);
updateMD2(ctx);
for (i = 0; i < DIGEST_CBLOCK_MD2; i++)
X[i] = static_cast<sal_uInt8>(C[i] & 0xff);
updateMD2(ctx);
}
rtlDigestError SAL_CALL rtl_digest_MD2(
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestMD2_Impl digest;
rtlDigestError result;
digest.m_digest = MD2;
initMD2(&(digest.m_context));
result = rtl_digest_updateMD2(&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getMD2(&digest, pBuffer, nBufLen);
rtl_secureZeroMemory(&digest, sizeof(digest));
return result;
}
rtlDigest SAL_CALL rtl_digest_createMD2() noexcept
{
DigestMD2_Impl *pImpl = RTL_DIGEST_CREATE(DigestMD2_Impl);
if (pImpl)
{
pImpl->m_digest = MD2;
initMD2(&(pImpl->m_context));
}
return static_cast<rtlDigest>(pImpl);
}
rtlDigestError SAL_CALL rtl_digest_updateMD2(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
DigestMD2_Impl *pImpl = static_cast<DigestMD2_Impl *>(Digest);
const sal_uInt8 *d = static_cast<const sal_uInt8 *>(pData);
DigestContextMD2 *ctx;
if (!pImpl || !pData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD2)
return rtl_Digest_E_Algorithm;
if (nDatLen == 0)
return rtl_Digest_E_None;
ctx = &(pImpl->m_context);
if (ctx->m_nDatLen)
{
sal_uInt8 *p = ctx->m_pData + ctx->m_nDatLen;
sal_uInt32 n = DIGEST_CBLOCK_MD2 - ctx->m_nDatLen;
if (nDatLen < n)
{
memcpy(p, d, nDatLen);
ctx->m_nDatLen += nDatLen;
return rtl_Digest_E_None;
}
memcpy(p, d, n);
d += n;
nDatLen -= n;
updateMD2(ctx);
ctx->m_nDatLen = 0;
}
while (nDatLen >= DIGEST_CBLOCK_MD2)
{
memcpy(ctx->m_pData, d, DIGEST_CBLOCK_MD2);
d += DIGEST_CBLOCK_MD2;
nDatLen -= DIGEST_CBLOCK_MD2;
updateMD2(ctx);
}
memcpy(ctx->m_pData, d, nDatLen);
ctx->m_nDatLen = nDatLen;
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_getMD2(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestMD2_Impl *pImpl = static_cast<DigestMD2_Impl *>(Digest);
sal_uInt32 i;
DigestContextMD2 *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD2)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
ctx = &(pImpl->m_context);
endMD2(ctx);
for (i = 0; i < DIGEST_CBLOCK_MD2; i++)
{
pBuffer[i] = static_cast<sal_uInt8>(ctx->m_state[i] & 0xff);
}
initMD2(ctx);
return rtl_Digest_E_None;
}
void SAL_CALL rtl_digest_destroyMD2(rtlDigest Digest) noexcept
{
DigestMD2_Impl *pImpl = static_cast<DigestMD2_Impl *>(Digest);
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmMD2)
rtl_freeZeroMemory(pImpl, sizeof(DigestMD2_Impl));
else
free(pImpl);
}
}
#define DIGEST_CBLOCK_MD5 64
#define DIGEST_LBLOCK_MD5 16
namespace {
struct DigestContextMD5
{
sal_uInt32 m_nDatLen;
sal_uInt32 m_pData[DIGEST_LBLOCK_MD5];
sal_uInt32 m_nA, m_nB, m_nC, m_nD;
sal_uInt32 m_nL, m_nH;
};
struct DigestMD5_Impl
{
Digest_Impl m_digest;
DigestContextMD5 m_context;
};
}
static void initMD5 (DigestContextMD5 *ctx);
static void updateMD5 (DigestContextMD5 *ctx);
static void endMD5 (DigestContextMD5 *ctx);
#define F(x,y,z) ((((y) ^ (z)) & (x)) ^ (z))
#define G(x,y,z) ((((x) ^ (y)) & (z)) ^ (y))
#define H(x,y,z) ((x) ^ (y) ^ (z))
#define I(x,y,z) (((x) | (~(z))) ^ (y))
#define R0(a,b,c,d,k,s,t) { \
a += ((k) + (t) + F((b), (c), (d))); \
a = RTL_DIGEST_ROTL(a, s); \
a += b; }
#define R1(a,b,c,d,k,s,t) { \
a += ((k) + (t) + G((b), (c), (d))); \
a = RTL_DIGEST_ROTL(a, s); \
a += b; }
#define R2(a,b,c,d,k,s,t) { \
a += ((k) + (t) + H((b), (c), (d))); \
a = RTL_DIGEST_ROTL(a, s); \
a += b; }
#define R3(a,b,c,d,k,s,t) { \
a += ((k) + (t) + I((b), (c), (d))); \
a = RTL_DIGEST_ROTL(a, s); \
a += b; }
const Digest_Impl MD5 =
{
rtl_Digest_AlgorithmMD5,
RTL_DIGEST_LENGTH_MD5,
nullptr,
rtl_digest_destroyMD5,
rtl_digest_updateMD5,
rtl_digest_getMD5
};
static void initMD5(DigestContextMD5 *ctx)
{
memset(ctx, 0, sizeof(DigestContextMD5));
ctx->m_nA = sal_uInt32(0x67452301L);
ctx->m_nB = sal_uInt32(0xefcdab89L);
ctx->m_nC = sal_uInt32(0x98badcfeL);
ctx->m_nD = sal_uInt32(0x10325476L);
}
static void updateMD5(DigestContextMD5 *ctx)
{
sal_uInt32 A, B, C, D;
sal_uInt32 *X;
A = ctx->m_nA;
B = ctx->m_nB;
C = ctx->m_nC;
D = ctx->m_nD;
X = ctx->m_pData;
R0 (A, B, C, D, X[ 0], 7, 0xd76aa478L);
R0 (D, A, B, C, X[ 1], 12, 0xe8c7b756L);
R0 (C, D, A, B, X[ 2], 17, 0x242070dbL);
R0 (B, C, D, A, X[ 3], 22, 0xc1bdceeeL);
R0 (A, B, C, D, X[ 4], 7, 0xf57c0fafL);
R0 (D, A, B, C, X[ 5], 12, 0x4787c62aL);
R0 (C, D, A, B, X[ 6], 17, 0xa8304613L);
R0 (B, C, D, A, X[ 7], 22, 0xfd469501L);
R0 (A, B, C, D, X[ 8], 7, 0x698098d8L);
R0 (D, A, B, C, X[ 9], 12, 0x8b44f7afL);
R0 (C, D, A, B, X[10], 17, 0xffff5bb1L);
R0 (B, C, D, A, X[11], 22, 0x895cd7beL);
R0 (A, B, C, D, X[12], 7, 0x6b901122L);
R0 (D, A, B, C, X[13], 12, 0xfd987193L);
R0 (C, D, A, B, X[14], 17, 0xa679438eL);
R0 (B, C, D, A, X[15], 22, 0x49b40821L);
R1 (A, B, C, D, X[ 1], 5, 0xf61e2562L);
R1 (D, A, B, C, X[ 6], 9, 0xc040b340L);
R1 (C, D, A, B, X[11], 14, 0x265e5a51L);
R1 (B, C, D, A, X[ 0], 20, 0xe9b6c7aaL);
R1 (A, B, C, D, X[ 5], 5, 0xd62f105dL);
R1 (D, A, B, C, X[10], 9, 0x02441453L);
R1 (C, D, A, B, X[15], 14, 0xd8a1e681L);
R1 (B, C, D, A, X[ 4], 20, 0xe7d3fbc8L);
R1 (A, B, C, D, X[ 9], 5, 0x21e1cde6L);
R1 (D, A, B, C, X[14], 9, 0xc33707d6L);
R1 (C, D, A, B, X[ 3], 14, 0xf4d50d87L);
R1 (B, C, D, A, X[ 8], 20, 0x455a14edL);
R1 (A, B, C, D, X[13], 5, 0xa9e3e905L);
R1 (D, A, B, C, X[ 2], 9, 0xfcefa3f8L);
R1 (C, D, A, B, X[ 7], 14, 0x676f02d9L);
R1 (B, C, D, A, X[12], 20, 0x8d2a4c8aL);
R2 (A, B, C, D, X[ 5], 4, 0xfffa3942L);
R2 (D, A, B, C, X[ 8], 11, 0x8771f681L);
R2 (C, D, A, B, X[11], 16, 0x6d9d6122L);
R2 (B, C, D, A, X[14], 23, 0xfde5380cL);
R2 (A, B, C, D, X[ 1], 4, 0xa4beea44L);
R2 (D, A, B, C, X[ 4], 11, 0x4bdecfa9L);
R2 (C, D, A, B, X[ 7], 16, 0xf6bb4b60L);
R2 (B, C, D, A, X[10], 23, 0xbebfbc70L);
R2 (A, B, C, D, X[13], 4, 0x289b7ec6L);
R2 (D, A, B, C, X[ 0], 11, 0xeaa127faL);
R2 (C, D, A, B, X[ 3], 16, 0xd4ef3085L);
R2 (B, C, D, A, X[ 6], 23, 0x04881d05L);
R2 (A, B, C, D, X[ 9], 4, 0xd9d4d039L);
R2 (D, A, B, C, X[12], 11, 0xe6db99e5L);
R2 (C, D, A, B, X[15], 16, 0x1fa27cf8L);
R2 (B, C, D, A, X[ 2], 23, 0xc4ac5665L);
R3 (A, B, C, D, X[ 0], 6, 0xf4292244L);
R3 (D, A, B, C, X[ 7], 10, 0x432aff97L);
R3 (C, D, A, B, X[14], 15, 0xab9423a7L);
R3 (B, C, D, A, X[ 5], 21, 0xfc93a039L);
R3 (A, B, C, D, X[12], 6, 0x655b59c3L);
R3 (D, A, B, C, X[ 3], 10, 0x8f0ccc92L);
R3 (C, D, A, B, X[10], 15, 0xffeff47dL);
R3 (B, C, D, A, X[ 1], 21, 0x85845dd1L);
R3 (A, B, C, D, X[ 8], 6, 0x6fa87e4fL);
R3 (D, A, B, C, X[15], 10, 0xfe2ce6e0L);
R3 (C, D, A, B, X[ 6], 15, 0xa3014314L);
R3 (B, C, D, A, X[13], 21, 0x4e0811a1L);
R3 (A, B, C, D, X[ 4], 6, 0xf7537e82L);
R3 (D, A, B, C, X[11], 10, 0xbd3af235L);
R3 (C, D, A, B, X[ 2], 15, 0x2ad7d2bbL);
R3 (B, C, D, A, X[ 9], 21, 0xeb86d391L);
ctx->m_nA += A;
ctx->m_nB += B;
ctx->m_nC += C;
ctx->m_nD += D;
}
static void endMD5(DigestContextMD5 *ctx)
{
static const sal_uInt8 end[4] =
{
0x80, 0x00, 0x00, 0x00
};
const sal_uInt8 *p = end;
sal_uInt32 *X;
int i;
X = ctx->m_pData;
i = (ctx->m_nDatLen >> 2);
#ifdef OSL_BIGENDIAN
swapLong(X, i + 1);
#endif /* OSL_BIGENDIAN */
switch (ctx->m_nDatLen & 0x03)
{
case 1: X[i] &= 0x000000ff; break;
case 2: X[i] &= 0x0000ffff; break;
case 3: X[i] &= 0x00ffffff; break;
}
switch (ctx->m_nDatLen & 0x03)
{
case 0: X[i] = static_cast<sal_uInt32>(*(p++)) << 0;
[[fallthrough]];
case 1: X[i] |= static_cast<sal_uInt32>(*(p++)) << 8;
[[fallthrough]];
case 2: X[i] |= static_cast<sal_uInt32>(*(p++)) << 16;
[[fallthrough]];
case 3: X[i] |= static_cast<sal_uInt32>(*p) << 24;
}
i += 1;
if (i > (DIGEST_LBLOCK_MD5 - 2))
{
for (; i < DIGEST_LBLOCK_MD5; i++)
{
X[i] = 0;
}
updateMD5(ctx);
i = 0;
}
for (; i < (DIGEST_LBLOCK_MD5 - 2); i++)
X[i] = 0;
X[DIGEST_LBLOCK_MD5 - 2] = ctx->m_nL;
X[DIGEST_LBLOCK_MD5 - 1] = ctx->m_nH;
updateMD5(ctx);
}
rtlDigestError SAL_CALL rtl_digest_MD5(
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestMD5_Impl digest;
rtlDigestError result;
digest.m_digest = MD5;
initMD5(&(digest.m_context));
result = rtl_digest_update(&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getMD5(&digest, pBuffer, nBufLen);
rtl_secureZeroMemory(&digest, sizeof(digest));
return result;
}
rtlDigest SAL_CALL rtl_digest_createMD5() noexcept
{
DigestMD5_Impl *pImpl = RTL_DIGEST_CREATE(DigestMD5_Impl);
if (pImpl)
{
pImpl->m_digest = MD5;
initMD5(&(pImpl->m_context));
}
return static_cast<rtlDigest>(pImpl);
}
rtlDigestError SAL_CALL rtl_digest_updateMD5(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
DigestMD5_Impl *pImpl = static_cast<DigestMD5_Impl *>(Digest);
const sal_uInt8 *d = static_cast<const sal_uInt8 *>(pData);
DigestContextMD5 *ctx;
sal_uInt32 len;
if (!pImpl || !pData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD5)
return rtl_Digest_E_Algorithm;
if (nDatLen == 0)
return rtl_Digest_E_None;
ctx = &(pImpl->m_context);
len = ctx->m_nL + (nDatLen << 3);
if (len < ctx->m_nL)
ctx->m_nH += 1;
ctx->m_nH += (nDatLen >> 29);
ctx->m_nL = len;
if (ctx->m_nDatLen)
{
sal_uInt8 *p = reinterpret_cast<sal_uInt8 *>(ctx->m_pData) + ctx->m_nDatLen;
sal_uInt32 n = DIGEST_CBLOCK_MD5 - ctx->m_nDatLen;
if (nDatLen < n)
{
memcpy(p, d, nDatLen);
ctx->m_nDatLen += nDatLen;
return rtl_Digest_E_None;
}
memcpy(p, d, n);
d += n;
nDatLen -= n;
#ifdef OSL_BIGENDIAN
swapLong(ctx->m_pData, DIGEST_LBLOCK_MD5);
#endif /* OSL_BIGENDIAN */
updateMD5(ctx);
ctx->m_nDatLen = 0;
}
while (nDatLen >= DIGEST_CBLOCK_MD5)
{
memcpy(ctx->m_pData, d, DIGEST_CBLOCK_MD5);
d += DIGEST_CBLOCK_MD5;
nDatLen -= DIGEST_CBLOCK_MD5;
#ifdef OSL_BIGENDIAN
swapLong(ctx->m_pData, DIGEST_LBLOCK_MD5);
#endif /* OSL_BIGENDIAN */
updateMD5(ctx);
}
memcpy(ctx->m_pData, d, nDatLen);
ctx->m_nDatLen = nDatLen;
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_getMD5(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestMD5_Impl *pImpl = static_cast<DigestMD5_Impl *>(Digest);
sal_uInt8 *p = pBuffer;
DigestContextMD5 *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD5)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
ctx = &(pImpl->m_context);
endMD5(ctx);
RTL_DIGEST_LTOC(ctx->m_nA, p);
RTL_DIGEST_LTOC(ctx->m_nB, p);
RTL_DIGEST_LTOC(ctx->m_nC, p);
RTL_DIGEST_LTOC(ctx->m_nD, p);
initMD5(ctx);
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_rawMD5(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestMD5_Impl *pImpl = static_cast<DigestMD5_Impl *>(Digest);
sal_uInt8 *p = pBuffer;
DigestContextMD5 *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD5)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
ctx = &(pImpl->m_context);
/* not finalized */
RTL_DIGEST_LTOC(ctx->m_nA, p);
RTL_DIGEST_LTOC(ctx->m_nB, p);
RTL_DIGEST_LTOC(ctx->m_nC, p);
RTL_DIGEST_LTOC(ctx->m_nD, p);
initMD5(ctx);
return rtl_Digest_E_None;
}
void SAL_CALL rtl_digest_destroyMD5(rtlDigest Digest) noexcept
{
DigestMD5_Impl *pImpl = static_cast<DigestMD5_Impl *>(Digest);
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmMD5)
rtl_freeZeroMemory(pImpl, sizeof(DigestMD5_Impl));
else
free(pImpl);
}
}
#define DIGEST_CBLOCK_SHA 64
#define DIGEST_LBLOCK_SHA 16
typedef sal_uInt32 DigestSHA_update_t(sal_uInt32 x);
static sal_uInt32 updateSHA_0(sal_uInt32 x);
static sal_uInt32 updateSHA_1(sal_uInt32 x);
namespace {
struct DigestContextSHA
{
DigestSHA_update_t *m_update;
sal_uInt32 m_nDatLen;
sal_uInt32 m_pData[DIGEST_LBLOCK_SHA];
sal_uInt32 m_nA, m_nB, m_nC, m_nD, m_nE;
sal_uInt32 m_nL, m_nH;
};
struct DigestSHA_Impl
{
Digest_Impl m_digest;
DigestContextSHA m_context;
};
}
static void initSHA(
DigestContextSHA *ctx, DigestSHA_update_t *fct);
static void updateSHA(DigestContextSHA *ctx);
static void endSHA(DigestContextSHA *ctx);
#define K_00_19 sal_uInt32(0x5a827999L)
#define K_20_39 sal_uInt32(0x6ed9eba1L)
#define K_40_59 sal_uInt32(0x8f1bbcdcL)
#define K_60_79 sal_uInt32(0xca62c1d6L)
#define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
#define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
#define F_40_59(b,c,d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
#define F_60_79(b,c,d) F_20_39(b,c,d)
#define BODY_X(i) \
(X[(i)&0x0f] ^ X[((i)+2)&0x0f] ^ X[((i)+8)&0x0f] ^ X[((i)+13)&0x0f])
#define BODY_00_15(u,i,a,b,c,d,e,f) \
(f) = X[i]; \
(f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_16_19(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_20_39(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_20_39 + RTL_DIGEST_ROTL((a), 5) + F_20_39((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_40_59(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_40_59 + RTL_DIGEST_ROTL((a), 5) + F_40_59((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_60_79(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_60_79 + RTL_DIGEST_ROTL((a), 5) + F_60_79((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
static void initSHA(
DigestContextSHA *ctx, DigestSHA_update_t *fct)
{
memset(ctx, 0, sizeof(DigestContextSHA));
ctx->m_update = fct;
ctx->m_nA = sal_uInt32(0x67452301L);
ctx->m_nB = sal_uInt32(0xefcdab89L);
ctx->m_nC = sal_uInt32(0x98badcfeL);
ctx->m_nD = sal_uInt32(0x10325476L);
ctx->m_nE = sal_uInt32(0xc3d2e1f0L);
}
static void updateSHA(DigestContextSHA *ctx)
{
sal_uInt32 A, B, C, D, E, T;
sal_uInt32 *X;
DigestSHA_update_t *U;
U = ctx->m_update;
A = ctx->m_nA;
B = ctx->m_nB;
C = ctx->m_nC;
D = ctx->m_nD;
E = ctx->m_nE;
X = ctx->m_pData;
BODY_00_15 (U, 0, A, B, C, D, E, T);
BODY_00_15 (U, 1, T, A, B, C, D, E);
BODY_00_15 (U, 2, E, T, A, B, C, D);
BODY_00_15 (U, 3, D, E, T, A, B, C);
BODY_00_15 (U, 4, C, D, E, T, A, B);
BODY_00_15 (U, 5, B, C, D, E, T, A);
BODY_00_15 (U, 6, A, B, C, D, E, T);
BODY_00_15 (U, 7, T, A, B, C, D, E);
BODY_00_15 (U, 8, E, T, A, B, C, D);
BODY_00_15 (U, 9, D, E, T, A, B, C);
BODY_00_15 (U, 10, C, D, E, T, A, B);
BODY_00_15 (U, 11, B, C, D, E, T, A);
BODY_00_15 (U, 12, A, B, C, D, E, T);
BODY_00_15 (U, 13, T, A, B, C, D, E);
BODY_00_15 (U, 14, E, T, A, B, C, D);
BODY_00_15 (U, 15, D, E, T, A, B, C);
BODY_16_19 (U, 16, C, D, E, T, A, B);
BODY_16_19 (U, 17, B, C, D, E, T, A);
BODY_16_19 (U, 18, A, B, C, D, E, T);
BODY_16_19 (U, 19, T, A, B, C, D, E);
BODY_20_39 (U, 20, E, T, A, B, C, D);
BODY_20_39 (U, 21, D, E, T, A, B, C);
BODY_20_39 (U, 22, C, D, E, T, A, B);
BODY_20_39 (U, 23, B, C, D, E, T, A);
BODY_20_39 (U, 24, A, B, C, D, E, T);
BODY_20_39 (U, 25, T, A, B, C, D, E);
BODY_20_39 (U, 26, E, T, A, B, C, D);
BODY_20_39 (U, 27, D, E, T, A, B, C);
BODY_20_39 (U, 28, C, D, E, T, A, B);
BODY_20_39 (U, 29, B, C, D, E, T, A);
BODY_20_39 (U, 30, A, B, C, D, E, T);
BODY_20_39 (U, 31, T, A, B, C, D, E);
BODY_20_39 (U, 32, E, T, A, B, C, D);
BODY_20_39 (U, 33, D, E, T, A, B, C);
BODY_20_39 (U, 34, C, D, E, T, A, B);
BODY_20_39 (U, 35, B, C, D, E, T, A);
BODY_20_39 (U, 36, A, B, C, D, E, T);
BODY_20_39 (U, 37, T, A, B, C, D, E);
BODY_20_39 (U, 38, E, T, A, B, C, D);
BODY_20_39 (U, 39, D, E, T, A, B, C);
BODY_40_59 (U, 40, C, D, E, T, A, B);
BODY_40_59 (U, 41, B, C, D, E, T, A);
BODY_40_59 (U, 42, A, B, C, D, E, T);
BODY_40_59 (U, 43, T, A, B, C, D, E);
BODY_40_59 (U, 44, E, T, A, B, C, D);
BODY_40_59 (U, 45, D, E, T, A, B, C);
BODY_40_59 (U, 46, C, D, E, T, A, B);
BODY_40_59 (U, 47, B, C, D, E, T, A);
BODY_40_59 (U, 48, A, B, C, D, E, T);
BODY_40_59 (U, 49, T, A, B, C, D, E);
BODY_40_59 (U, 50, E, T, A, B, C, D);
BODY_40_59 (U, 51, D, E, T, A, B, C);
BODY_40_59 (U, 52, C, D, E, T, A, B);
BODY_40_59 (U, 53, B, C, D, E, T, A);
BODY_40_59 (U, 54, A, B, C, D, E, T);
BODY_40_59 (U, 55, T, A, B, C, D, E);
BODY_40_59 (U, 56, E, T, A, B, C, D);
BODY_40_59 (U, 57, D, E, T, A, B, C);
BODY_40_59 (U, 58, C, D, E, T, A, B);
BODY_40_59 (U, 59, B, C, D, E, T, A);
BODY_60_79 (U, 60, A, B, C, D, E, T);
BODY_60_79 (U, 61, T, A, B, C, D, E);
BODY_60_79 (U, 62, E, T, A, B, C, D);
BODY_60_79 (U, 63, D, E, T, A, B, C);
BODY_60_79 (U, 64, C, D, E, T, A, B);
BODY_60_79 (U, 65, B, C, D, E, T, A);
BODY_60_79 (U, 66, A, B, C, D, E, T);
BODY_60_79 (U, 67, T, A, B, C, D, E);
BODY_60_79 (U, 68, E, T, A, B, C, D);
BODY_60_79 (U, 69, D, E, T, A, B, C);
BODY_60_79 (U, 70, C, D, E, T, A, B);
BODY_60_79 (U, 71, B, C, D, E, T, A);
BODY_60_79 (U, 72, A, B, C, D, E, T);
BODY_60_79 (U, 73, T, A, B, C, D, E);
BODY_60_79 (U, 74, E, T, A, B, C, D);
BODY_60_79 (U, 75, D, E, T, A, B, C);
BODY_60_79 (U, 76, C, D, E, T, A, B);
BODY_60_79 (U, 77, B, C, D, E, T, A);
BODY_60_79 (U, 78, A, B, C, D, E, T);
BODY_60_79 (U, 79, T, A, B, C, D, E);
ctx->m_nA += E;
ctx->m_nB += T;
ctx->m_nC += A;
ctx->m_nD += B;
ctx->m_nE += C;
}
static void endSHA(DigestContextSHA *ctx)
{
static const sal_uInt8 end[4] =
{
0x80, 0x00, 0x00, 0x00
};
const sal_uInt8 *p = end;
sal_uInt32 *X;
int i;
X = ctx->m_pData;
i = (ctx->m_nDatLen >> 2);
#ifdef OSL_BIGENDIAN
swapLong(X, i + 1);
#endif /* OSL_BIGENDIAN */
switch (ctx->m_nDatLen & 0x03)
{
case 1: X[i] &= 0x000000ff; break;
case 2: X[i] &= 0x0000ffff; break;
case 3: X[i] &= 0x00ffffff; break;
}
switch (ctx->m_nDatLen & 0x03)
{
case 0: X[i] = static_cast<sal_uInt32>(*(p++)) << 0;
[[fallthrough]];
case 1: X[i] |= static_cast<sal_uInt32>(*(p++)) << 8;
[[fallthrough]];
case 2: X[i] |= static_cast<sal_uInt32>(*(p++)) << 16;
[[fallthrough]];
case 3: X[i] |= static_cast<sal_uInt32>(*(p++)) << 24;
}
swapLong(X, i + 1);
i += 1;
// tdf#114939 NB: this is WRONG and should be ">" not ">=" but is not
// fixed as this buggy SHA1 implementation is needed for compatibility
if (i >= (DIGEST_LBLOCK_SHA - 2))
{
for (; i < DIGEST_LBLOCK_SHA; i++)
{
X[i] = 0;
}
updateSHA(ctx);
i = 0;
}
for (; i < (DIGEST_LBLOCK_SHA - 2); i++)
{
X[i] = 0;
}
X[DIGEST_LBLOCK_SHA - 2] = ctx->m_nH;
X[DIGEST_LBLOCK_SHA - 1] = ctx->m_nL;
updateSHA(ctx);
}
const Digest_Impl SHA_0 =
{
rtl_Digest_AlgorithmSHA,
RTL_DIGEST_LENGTH_SHA,
nullptr,
rtl_digest_destroySHA,
rtl_digest_updateSHA,
rtl_digest_getSHA
};
static sal_uInt32 updateSHA_0(sal_uInt32 x)
{
return x;
}
rtlDigestError SAL_CALL rtl_digest_SHA(
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestSHA_Impl digest;
rtlDigestError result;
digest.m_digest = SHA_0;
initSHA(&(digest.m_context), updateSHA_0);
result = rtl_digest_updateSHA(&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getSHA(&digest, pBuffer, nBufLen);
rtl_secureZeroMemory(&digest, sizeof(digest));
return result;
}
rtlDigest SAL_CALL rtl_digest_createSHA() noexcept
{
DigestSHA_Impl *pImpl = RTL_DIGEST_CREATE(DigestSHA_Impl);
if (pImpl)
{
pImpl->m_digest = SHA_0;
initSHA(&(pImpl->m_context), updateSHA_0);
}
return static_cast<rtlDigest>(pImpl);
}
rtlDigestError SAL_CALL rtl_digest_updateSHA(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
DigestSHA_Impl *pImpl = static_cast<DigestSHA_Impl *>(Digest);
const sal_uInt8 *d = static_cast<const sal_uInt8 *>(pData);
DigestContextSHA *ctx;
sal_uInt32 len;
if (!pImpl || !pData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA)
return rtl_Digest_E_Algorithm;
if (nDatLen == 0)
return rtl_Digest_E_None;
ctx = &(pImpl->m_context);
len = ctx->m_nL + (nDatLen << 3);
if (len < ctx->m_nL)
ctx->m_nH += 1;
ctx->m_nH += (nDatLen >> 29);
ctx->m_nL = len;
if (ctx->m_nDatLen)
{
sal_uInt8 *p = reinterpret_cast<sal_uInt8 *>(ctx->m_pData) + ctx->m_nDatLen;
sal_uInt32 n = DIGEST_CBLOCK_SHA - ctx->m_nDatLen;
if (nDatLen < n)
{
memcpy(p, d, nDatLen);
ctx->m_nDatLen += nDatLen;
return rtl_Digest_E_None;
}
memcpy(p, d, n);
d += n;
nDatLen -= n;
#ifndef OSL_BIGENDIAN
swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif /* OSL_BIGENDIAN */
updateSHA(ctx);
ctx->m_nDatLen = 0;
}
while (nDatLen >= DIGEST_CBLOCK_SHA)
{
memcpy(ctx->m_pData, d, DIGEST_CBLOCK_SHA);
d += DIGEST_CBLOCK_SHA;
nDatLen -= DIGEST_CBLOCK_SHA;
#ifndef OSL_BIGENDIAN
swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif /* OSL_BIGENDIAN */
updateSHA(ctx);
}
memcpy(ctx->m_pData, d, nDatLen);
ctx->m_nDatLen = nDatLen;
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_getSHA(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestSHA_Impl *pImpl = static_cast<DigestSHA_Impl *>(Digest);
sal_uInt8 *p = pBuffer;
DigestContextSHA *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
ctx = &(pImpl->m_context);
endSHA(ctx);
RTL_DIGEST_HTONL(ctx->m_nA, p);
RTL_DIGEST_HTONL(ctx->m_nB, p);
RTL_DIGEST_HTONL(ctx->m_nC, p);
RTL_DIGEST_HTONL(ctx->m_nD, p);
RTL_DIGEST_HTONL(ctx->m_nE, p);
initSHA(ctx, updateSHA_0);
return rtl_Digest_E_None;
}
void SAL_CALL rtl_digest_destroySHA(rtlDigest Digest) noexcept
{
DigestSHA_Impl *pImpl = static_cast< DigestSHA_Impl * >(Digest);
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA)
rtl_freeZeroMemory(pImpl, sizeof(DigestSHA_Impl));
else
free(pImpl);
}
}
const Digest_Impl SHA_1 =
{
rtl_Digest_AlgorithmSHA1,
RTL_DIGEST_LENGTH_SHA1,
nullptr,
rtl_digest_destroySHA1,
rtl_digest_updateSHA1,
rtl_digest_getSHA1
};
static sal_uInt32 updateSHA_1(sal_uInt32 x)
{
return RTL_DIGEST_ROTL(x, 1);
}
rtlDigestError SAL_CALL rtl_digest_SHA1(
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestSHA_Impl digest;
rtlDigestError result;
digest.m_digest = SHA_1;
initSHA(&(digest.m_context), updateSHA_1);
result = rtl_digest_updateSHA1(&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getSHA1(&digest, pBuffer, nBufLen);
rtl_secureZeroMemory(&digest, sizeof(digest));
return result;
}
rtlDigest SAL_CALL rtl_digest_createSHA1() noexcept
{
DigestSHA_Impl *pImpl = RTL_DIGEST_CREATE(DigestSHA_Impl);
if (pImpl)
{
pImpl->m_digest = SHA_1;
initSHA(&(pImpl->m_context), updateSHA_1);
}
return static_cast<rtlDigest>(pImpl);
}
rtlDigestError SAL_CALL rtl_digest_updateSHA1(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
DigestSHA_Impl *pImpl = static_cast< DigestSHA_Impl * >(Digest);
const sal_uInt8 *d = static_cast< const sal_uInt8 * >(pData);
DigestContextSHA *ctx;
sal_uInt32 len;
if (!pImpl || !pData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA1)
return rtl_Digest_E_Algorithm;
if (nDatLen == 0)
return rtl_Digest_E_None;
ctx = &(pImpl->m_context);
len = ctx->m_nL + (nDatLen << 3);
if (len < ctx->m_nL)
ctx->m_nH += 1;
ctx->m_nH += (nDatLen >> 29);
ctx->m_nL = len;
if (ctx->m_nDatLen)
{
sal_uInt8 *p = reinterpret_cast<sal_uInt8 *>(ctx->m_pData) + ctx->m_nDatLen;
sal_uInt32 n = DIGEST_CBLOCK_SHA - ctx->m_nDatLen;
if (nDatLen < n)
{
memcpy(p, d, nDatLen);
ctx->m_nDatLen += nDatLen;
return rtl_Digest_E_None;
}
memcpy(p, d, n);
d += n;
nDatLen -= n;
#ifndef OSL_BIGENDIAN
swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif /* OSL_BIGENDIAN */
updateSHA(ctx);
ctx->m_nDatLen = 0;
}
while (nDatLen >= DIGEST_CBLOCK_SHA)
{
memcpy(ctx->m_pData, d, DIGEST_CBLOCK_SHA);
d += DIGEST_CBLOCK_SHA;
nDatLen -= DIGEST_CBLOCK_SHA;
#ifndef OSL_BIGENDIAN
swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif /* OSL_BIGENDIAN */
updateSHA(ctx);
}
memcpy(ctx->m_pData, d, nDatLen);
ctx->m_nDatLen = nDatLen;
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_getSHA1 (
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestSHA_Impl *pImpl = static_cast<DigestSHA_Impl *>(Digest);
sal_uInt8 *p = pBuffer;
DigestContextSHA *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA1)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
ctx = &(pImpl->m_context);
endSHA(ctx);
RTL_DIGEST_HTONL(ctx->m_nA, p);
RTL_DIGEST_HTONL(ctx->m_nB, p);
RTL_DIGEST_HTONL(ctx->m_nC, p);
RTL_DIGEST_HTONL(ctx->m_nD, p);
RTL_DIGEST_HTONL(ctx->m_nE, p);
initSHA(ctx, updateSHA_1);
return rtl_Digest_E_None;
}
void SAL_CALL rtl_digest_destroySHA1(rtlDigest Digest) noexcept
{
DigestSHA_Impl *pImpl = static_cast< DigestSHA_Impl * >(Digest);
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1)
rtl_freeZeroMemory(pImpl, sizeof(DigestSHA_Impl));
else
free(pImpl);
}
}
#define DIGEST_CBLOCK_HMAC_MD5 64
namespace {
struct ContextHMAC_MD5
{
DigestMD5_Impl m_hash;
sal_uInt8 m_opad[DIGEST_CBLOCK_HMAC_MD5];
};
struct DigestHMAC_MD5_Impl
{
Digest_Impl m_digest;
ContextHMAC_MD5 m_context;
};
}
static void initHMAC_MD5(ContextHMAC_MD5 * ctx);
static void ipadHMAC_MD5(ContextHMAC_MD5 * ctx);
static void opadHMAC_MD5(ContextHMAC_MD5 * ctx);
const Digest_Impl HMAC_MD5 =
{
rtl_Digest_AlgorithmHMAC_MD5,
RTL_DIGEST_LENGTH_MD5,
rtl_digest_initHMAC_MD5,
rtl_digest_destroyHMAC_MD5,
rtl_digest_updateHMAC_MD5,
rtl_digest_getHMAC_MD5
};
static void initHMAC_MD5(ContextHMAC_MD5 * ctx)
{
DigestMD5_Impl *pImpl = &(ctx->m_hash);
pImpl->m_digest = MD5;
initMD5(&(pImpl->m_context));
memset(ctx->m_opad, 0, DIGEST_CBLOCK_HMAC_MD5);
}
static void ipadHMAC_MD5(ContextHMAC_MD5 * ctx)
{
sal_uInt32 i;
for (i = 0; i < DIGEST_CBLOCK_HMAC_MD5; i++)
{
ctx->m_opad[i] ^= 0x36;
}
rtl_digest_updateMD5(&(ctx->m_hash), ctx->m_opad, DIGEST_CBLOCK_HMAC_MD5);
for (i = 0; i < DIGEST_CBLOCK_HMAC_MD5; i++)
{
ctx->m_opad[i] ^= 0x36;
}
}
static void opadHMAC_MD5(ContextHMAC_MD5 * ctx)
{
sal_uInt32 i;
for (i = 0; i < DIGEST_CBLOCK_HMAC_MD5; i++)
{
ctx->m_opad[i] ^= 0x5c;
}
}
rtlDigestError SAL_CALL rtl_digest_HMAC_MD5(
const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen,
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestHMAC_MD5_Impl digest;
rtlDigestError result;
digest.m_digest = HMAC_MD5;
result = rtl_digest_initHMAC_MD5(&digest, pKeyData, nKeyLen);
if (result == rtl_Digest_E_None)
{
result = rtl_digest_updateHMAC_MD5(&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getHMAC_MD5(&digest, pBuffer, nBufLen);
}
rtl_secureZeroMemory(&digest, sizeof(digest));
return result;
}
rtlDigest SAL_CALL rtl_digest_createHMAC_MD5() noexcept
{
DigestHMAC_MD5_Impl *pImpl = RTL_DIGEST_CREATE(DigestHMAC_MD5_Impl);
if (pImpl)
{
pImpl->m_digest = HMAC_MD5;
initHMAC_MD5(&(pImpl->m_context));
}
return static_cast< rtlDigest >(pImpl);
}
rtlDigestError SAL_CALL rtl_digest_initHMAC_MD5(
rtlDigest Digest, const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen) noexcept
{
DigestHMAC_MD5_Impl *pImpl = static_cast< DigestHMAC_MD5_Impl* >(Digest);
ContextHMAC_MD5 *ctx;
if (!pImpl || !pKeyData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_MD5)
return rtl_Digest_E_Algorithm;
ctx = &(pImpl->m_context);
initHMAC_MD5(ctx);
if (nKeyLen > DIGEST_CBLOCK_HMAC_MD5)
{
/* Initialize 'opad' with hashed 'KeyData' */
rtl_digest_updateMD5(&(ctx->m_hash), pKeyData, nKeyLen);
rtl_digest_getMD5(&(ctx->m_hash), ctx->m_opad, RTL_DIGEST_LENGTH_MD5);
}
else
{
/* Initialize 'opad' with plain 'KeyData' */
memcpy(ctx->m_opad, pKeyData, nKeyLen);
}
ipadHMAC_MD5(ctx);
opadHMAC_MD5(ctx);
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_updateHMAC_MD5(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
DigestHMAC_MD5_Impl *pImpl = static_cast< DigestHMAC_MD5_Impl* >(Digest);
ContextHMAC_MD5 *ctx;
if (!pImpl || !pData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_MD5)
return rtl_Digest_E_Algorithm;
ctx = &(pImpl->m_context);
rtl_digest_updateMD5(&(ctx->m_hash), pData, nDatLen);
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_getHMAC_MD5(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestHMAC_MD5_Impl *pImpl = static_cast<DigestHMAC_MD5_Impl*>(Digest);
ContextHMAC_MD5 *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_MD5)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
nBufLen = pImpl->m_digest.m_length;
ctx = &(pImpl->m_context);
rtl_digest_getMD5(&(ctx->m_hash), pBuffer, nBufLen);
rtl_digest_updateMD5(&(ctx->m_hash), ctx->m_opad, 64);
rtl_digest_updateMD5(&(ctx->m_hash), pBuffer, nBufLen);
rtl_digest_getMD5(&(ctx->m_hash), pBuffer, nBufLen);
opadHMAC_MD5(ctx);
ipadHMAC_MD5(ctx);
opadHMAC_MD5(ctx);
return rtl_Digest_E_None;
}
void SAL_CALL rtl_digest_destroyHMAC_MD5(rtlDigest Digest) noexcept
{
DigestHMAC_MD5_Impl *pImpl = static_cast< DigestHMAC_MD5_Impl* >(Digest);
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmHMAC_MD5)
rtl_freeZeroMemory(pImpl, sizeof(DigestHMAC_MD5_Impl));
else
free(pImpl);
}
}
#define DIGEST_CBLOCK_HMAC_SHA1 64
namespace {
struct ContextHMAC_SHA1
{
DigestSHA_Impl m_hash;
sal_uInt8 m_opad[DIGEST_CBLOCK_HMAC_SHA1];
};
struct DigestHMAC_SHA1_Impl
{
Digest_Impl m_digest;
ContextHMAC_SHA1 m_context;
};
}
static void initHMAC_SHA1(ContextHMAC_SHA1 * ctx);
static void ipadHMAC_SHA1(ContextHMAC_SHA1 * ctx);
static void opadHMAC_SHA1(ContextHMAC_SHA1 * ctx);
const Digest_Impl HMAC_SHA1 =
{
rtl_Digest_AlgorithmHMAC_SHA1,
RTL_DIGEST_LENGTH_SHA1,
rtl_digest_initHMAC_SHA1,
rtl_digest_destroyHMAC_SHA1,
rtl_digest_updateHMAC_SHA1,
rtl_digest_getHMAC_SHA1
};
static void initHMAC_SHA1(ContextHMAC_SHA1 * ctx)
{
DigestSHA_Impl *pImpl = &(ctx->m_hash);
pImpl->m_digest = SHA_1;
initSHA(&(pImpl->m_context), updateSHA_1);
memset(ctx->m_opad, 0, DIGEST_CBLOCK_HMAC_SHA1);
}
static void ipadHMAC_SHA1(ContextHMAC_SHA1 * ctx)
{
sal_uInt32 i;
for (i = 0; i < DIGEST_CBLOCK_HMAC_SHA1; i++)
{
ctx->m_opad[i] ^= 0x36;
}
rtl_digest_updateSHA1(&(ctx->m_hash), ctx->m_opad, DIGEST_CBLOCK_HMAC_SHA1);
for (i = 0; i < DIGEST_CBLOCK_HMAC_SHA1; i++)
{
ctx->m_opad[i] ^= 0x36;
}
}
static void opadHMAC_SHA1(ContextHMAC_SHA1 * ctx)
{
sal_uInt32 i;
for (i = 0; i < DIGEST_CBLOCK_HMAC_SHA1; i++)
{
ctx->m_opad[i] ^= 0x5c;
}
}
rtlDigestError SAL_CALL rtl_digest_HMAC_SHA1(
const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen,
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestHMAC_SHA1_Impl digest;
rtlDigestError result;
digest.m_digest = HMAC_SHA1;
result = rtl_digest_initHMAC_SHA1(&digest, pKeyData, nKeyLen);
if (result == rtl_Digest_E_None)
{
result = rtl_digest_updateHMAC_SHA1(&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getHMAC_SHA1(&digest, pBuffer, nBufLen);
}
rtl_secureZeroMemory(&digest, sizeof(digest));
return result;
}
rtlDigest SAL_CALL rtl_digest_createHMAC_SHA1() noexcept
{
DigestHMAC_SHA1_Impl *pImpl = RTL_DIGEST_CREATE(DigestHMAC_SHA1_Impl);
if (pImpl)
{
pImpl->m_digest = HMAC_SHA1;
initHMAC_SHA1(&(pImpl->m_context));
}
return static_cast<rtlDigest>(pImpl);
}
rtlDigestError SAL_CALL rtl_digest_initHMAC_SHA1(
rtlDigest Digest, const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen) noexcept
{
DigestHMAC_SHA1_Impl *pImpl = static_cast<DigestHMAC_SHA1_Impl*>(Digest);
ContextHMAC_SHA1 *ctx;
if (!pImpl || !pKeyData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_SHA1)
return rtl_Digest_E_Algorithm;
ctx = &(pImpl->m_context);
initHMAC_SHA1(ctx);
if (nKeyLen > DIGEST_CBLOCK_HMAC_SHA1)
{
/* Initialize 'opad' with hashed 'KeyData' */
rtl_digest_updateSHA1(&(ctx->m_hash), pKeyData, nKeyLen);
rtl_digest_getSHA1(&(ctx->m_hash), ctx->m_opad, RTL_DIGEST_LENGTH_SHA1);
}
else
{
/* Initialize 'opad' with plain 'KeyData' */
memcpy(ctx->m_opad, pKeyData, nKeyLen);
}
ipadHMAC_SHA1(ctx);
opadHMAC_SHA1(ctx);
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_updateHMAC_SHA1(
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept
{
DigestHMAC_SHA1_Impl *pImpl = static_cast<DigestHMAC_SHA1_Impl*>(Digest);
ContextHMAC_SHA1 *ctx;
if (!pImpl || !pData)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_SHA1)
return rtl_Digest_E_Algorithm;
ctx = &(pImpl->m_context);
rtl_digest_updateSHA1(&(ctx->m_hash), pData, nDatLen);
return rtl_Digest_E_None;
}
rtlDigestError SAL_CALL rtl_digest_getHMAC_SHA1(
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept
{
DigestHMAC_SHA1_Impl *pImpl = static_cast<DigestHMAC_SHA1_Impl*>(Digest);
ContextHMAC_SHA1 *ctx;
if (!pImpl || !pBuffer)
return rtl_Digest_E_Argument;
if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_SHA1)
return rtl_Digest_E_Algorithm;
if (pImpl->m_digest.m_length > nBufLen)
return rtl_Digest_E_BufferSize;
nBufLen = pImpl->m_digest.m_length;
ctx = &(pImpl->m_context);
rtl_digest_getSHA1(&(ctx->m_hash), pBuffer, nBufLen);
rtl_digest_updateSHA1(&(ctx->m_hash), ctx->m_opad, sizeof(ctx->m_opad));
rtl_digest_updateSHA1(&(ctx->m_hash), pBuffer, nBufLen);
rtl_digest_getSHA1(&(ctx->m_hash), pBuffer, nBufLen);
opadHMAC_SHA1(ctx);
ipadHMAC_SHA1(ctx);
opadHMAC_SHA1(ctx);
return rtl_Digest_E_None;
}
void SAL_CALL rtl_digest_destroyHMAC_SHA1(rtlDigest Digest) noexcept
{
DigestHMAC_SHA1_Impl *pImpl = static_cast<DigestHMAC_SHA1_Impl*>(Digest);
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmHMAC_SHA1)
rtl_freeZeroMemory(pImpl, sizeof(DigestHMAC_SHA1_Impl));
else
free(pImpl);
}
}
#define DIGEST_CBLOCK_PBKDF2 RTL_DIGEST_LENGTH_HMAC_SHA1
static void updatePBKDF2(
rtlDigest hDigest,
sal_uInt8 T[DIGEST_CBLOCK_PBKDF2],
const sal_uInt8 *pSaltData, sal_uInt32 nSaltLen,
sal_uInt32 nCount, sal_uInt32 nIndex)
{
/* T_i = F (P, S, c, i) */
sal_uInt8 U[DIGEST_CBLOCK_PBKDF2];
sal_uInt32 i, k;
/* U_(1) = PRF (P, S || INDEX) */
rtl_digest_updateHMAC_SHA1(hDigest, pSaltData, nSaltLen);
rtl_digest_updateHMAC_SHA1(hDigest, &nIndex, sizeof(nIndex));
rtl_digest_getHMAC_SHA1(hDigest, U, DIGEST_CBLOCK_PBKDF2);
/* T = U_(1) */
for (k = 0; k < DIGEST_CBLOCK_PBKDF2; k++)
{
T[k] = U[k];
}
/* T ^= U_(2) ^ ... ^ U_(c) */
for (i = 1; i < nCount; i++)
{
/* U_(i) = PRF (P, U_(i-1)) */
rtl_digest_updateHMAC_SHA1(hDigest, U, DIGEST_CBLOCK_PBKDF2);
rtl_digest_getHMAC_SHA1(hDigest, U, DIGEST_CBLOCK_PBKDF2);
/* T ^= U_(i) */
for (k = 0; k < DIGEST_CBLOCK_PBKDF2; k++)
{
T[k] ^= U[k];
}
}
rtl_secureZeroMemory(U, DIGEST_CBLOCK_PBKDF2);
}
rtlDigestError SAL_CALL rtl_digest_PBKDF2(
sal_uInt8 *pKeyData , sal_uInt32 nKeyLen,
const sal_uInt8 *pPassData, sal_uInt32 nPassLen,
const sal_uInt8 *pSaltData, sal_uInt32 nSaltLen,
sal_uInt32 nCount) noexcept
{
DigestHMAC_SHA1_Impl digest;
sal_uInt32 i = 1;
if (!pKeyData || !pPassData || !pSaltData)
return rtl_Digest_E_Argument;
digest.m_digest = HMAC_SHA1;
rtl_digest_initHMAC_SHA1(&digest, pPassData, nPassLen);
/* DK = T_(1) || T_(2) || ... || T_(l) */
while (nKeyLen >= DIGEST_CBLOCK_PBKDF2)
{
/* T_(i) = F (P, S, c, i); DK ||= T_(i) */
updatePBKDF2(
&digest, pKeyData,
pSaltData, nSaltLen,
nCount, OSL_NETDWORD(i));
/* Next 'KeyData' block */
pKeyData += DIGEST_CBLOCK_PBKDF2;
nKeyLen -= DIGEST_CBLOCK_PBKDF2;
i += 1;
}
if (nKeyLen > 0)
{
/* Last 'KeyData' block */
sal_uInt8 T[DIGEST_CBLOCK_PBKDF2];
/* T_i = F (P, S, c, i) */
updatePBKDF2(
&digest, T,
pSaltData, nSaltLen,
nCount, OSL_NETDWORD(i));
/* DK ||= T_(i) */
memcpy(pKeyData, T, nKeyLen);
rtl_secureZeroMemory(T, DIGEST_CBLOCK_PBKDF2);
}
rtl_secureZeroMemory(&digest, sizeof(digest));
return rtl_Digest_E_None;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V1008 Consider inspecting the 'for' operator. No more than one iteration of the loop will be performed.