/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <pdfparse.hxx>
#include <comphelper/hash.hxx>
#include <rtl/strbuf.hxx>
#include <rtl/ustring.hxx>
#include <rtl/ustrbuf.hxx>
#include <rtl/digest.h>
#include <rtl/cipher.h>
#include <sal/log.hxx>
#include <zlib.h>
#include <math.h>
#include <map>
#include <string.h>
namespace pdfparse
{
struct EmitImplData
{
// xref table: maps object number to a pair of (generation, buffer offset)
typedef std::map< unsigned int, std::pair< unsigned int, unsigned int > > XRefTable;
XRefTable m_aXRefTable;
// container of all indirect objects (usually a PDFFile*)
const PDFContainer* m_pObjectContainer;
unsigned int m_nDecryptObject;
unsigned int m_nDecryptGeneration;
// returns true if the xref table was updated
bool insertXref( unsigned int nObject, unsigned int nGeneration, unsigned int nOffset )
{
XRefTable::iterator it = m_aXRefTable.find( nObject );
if( it == m_aXRefTable.end() )
{
// new entry
m_aXRefTable[ nObject ] = std::pair<unsigned int, unsigned int>(nGeneration,nOffset);
return true;
}
// update old entry, if generation number is higher
if( it->second.first < nGeneration )
{
it->second = std::pair<unsigned int, unsigned int>(nGeneration,nOffset);
return true;
}
return false;
}
explicit EmitImplData( const PDFContainer* pTopContainer ) :
m_pObjectContainer( pTopContainer ),
m_nDecryptObject( 0 ),
m_nDecryptGeneration( 0 )
{}
void decrypt( const sal_uInt8* pInBuffer, sal_uInt32 nLen, sal_uInt8* pOutBuffer,
unsigned int nObject, unsigned int nGeneration ) const
{
const PDFFile* pFile = dynamic_cast<const PDFFile*>(m_pObjectContainer);
pFile && pFile->decrypt( pInBuffer, nLen, pOutBuffer, nObject, nGeneration );
}
void setDecryptObject( unsigned int nObject, unsigned int nGeneration )
{
m_nDecryptObject = nObject;
m_nDecryptGeneration = nGeneration;
}
};
}
using namespace pdfparse;
EmitContext::EmitContext( const PDFContainer* pTop ) :
m_bDeflate( false ),
m_bDecrypt( false )
{
if( pTop )
m_pImplData.reset( new EmitImplData( pTop ) );
}
EmitContext::~EmitContext()
{
}
PDFEntry::~PDFEntry()
{
}
EmitImplData* PDFEntry::getEmitData( EmitContext const & rContext )
{
return rContext.m_pImplData.get();
}
void PDFEntry::setEmitData( EmitContext& rContext, EmitImplData* pNewEmitData )
{
if( rContext.m_pImplData && rContext.m_pImplData.get() != pNewEmitData )
rContext.m_pImplData.reset();
rContext.m_pImplData.reset( pNewEmitData );
}
PDFValue::~PDFValue()
{
}
PDFComment::~PDFComment()
{
}
bool PDFComment::emit( EmitContext& rWriteContext ) const
{
return rWriteContext.write( m_aComment.getStr(), m_aComment.getLength() );
}
PDFEntry* PDFComment::clone() const
{
return new PDFComment( m_aComment );
}
PDFName::~PDFName()
{
}
bool PDFName::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( " /", 2 ) )
return false;
return rWriteContext.write( m_aName.getStr(), m_aName.getLength() );
}
PDFEntry* PDFName::clone() const
{
return new PDFName( m_aName );
}
OUString PDFName::getFilteredName() const
{
OStringBuffer aFilter( m_aName.getLength() );
const char* pStr = m_aName.getStr();
unsigned int nLen = m_aName.getLength();
for( unsigned int i = 0; i < nLen; i++ )
{
if( (i < nLen - 3) && pStr[i] == '#' )
{
char rResult = 0;
i++;
if( pStr[i] >= '0' && pStr[i] <= '9' )
rResult = char( pStr[i]-'0' ) << 4;
else if( pStr[i] >= 'a' && pStr[i] <= 'f' )
rResult = char( pStr[i]-'a' + 10 ) << 4;
else if( pStr[i] >= 'A' && pStr[i] <= 'F' )
rResult = char( pStr[i]-'A' + 10 ) << 4;
i++;
if( pStr[i] >= '0' && pStr[i] <= '9' )
rResult |= char( pStr[i]-'0' );
else if( pStr[i] >= 'a' && pStr[i] <= 'f' )
rResult |= char( pStr[i]-'a' + 10 );
else if( pStr[i] >= 'A' && pStr[i] <= 'F' )
rResult |= char( pStr[i]-'A' + 10 );
aFilter.append( rResult );
}
else
aFilter.append( pStr[i] );
}
return OStringToOUString( aFilter, RTL_TEXTENCODING_UTF8 );
}
PDFString::~PDFString()
{
}
bool PDFString::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( " ", 1 ) )
return false;
EmitImplData* pEData = getEmitData( rWriteContext );
if( rWriteContext.m_bDecrypt && pEData && pEData->m_nDecryptObject )
{
OString aFiltered( getFilteredString() );
// decrypt inplace (evil since OString is supposed to be const
// however in this case we know that getFilteredString returned a singular string instance
pEData->decrypt( reinterpret_cast<sal_uInt8 const *>(aFiltered.getStr()), aFiltered.getLength(),
reinterpret_cast<sal_uInt8 *>(const_cast<char *>(aFiltered.getStr())),
pEData->m_nDecryptObject, pEData->m_nDecryptGeneration );
// check for string or hex string
const char* pStr = aFiltered.getStr();
if( aFiltered.getLength() > 1 &&
( (static_cast<unsigned char>(pStr[0]) == 0xff && static_cast<unsigned char>(pStr[1]) == 0xfe) ||
(static_cast<unsigned char>(pStr[0]) == 0xfe && static_cast<unsigned char>(pStr[1]) == 0xff) ) )
{
static const char pHexTab[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
if( ! rWriteContext.write( "<", 1 ) )
return false;
for( sal_Int32 i = 0; i < aFiltered.getLength(); i++ )
{
if( ! rWriteContext.write( pHexTab + ((sal_uInt32(pStr[i]) >> 4) & 0x0f), 1 ) )
return false;
if( ! rWriteContext.write( pHexTab + (sal_uInt32(pStr[i]) & 0x0f), 1 ) )
return false;
}
if( ! rWriteContext.write( ">", 1 ) )
return false;
}
else
{
if( ! rWriteContext.write( "(", 1 ) )
return false;
if( ! rWriteContext.write( aFiltered.getStr(), aFiltered.getLength() ) )
return false;
if( ! rWriteContext.write( ")", 1 ) )
return false;
}
return true;
}
return rWriteContext.write( m_aString.getStr(), m_aString.getLength() );
}
PDFEntry* PDFString::clone() const
{
return new PDFString( m_aString );
}
OString PDFString::getFilteredString() const
{
int nLen = m_aString.getLength();
OStringBuffer aBuf( nLen );
const char* pStr = m_aString.getStr();
if( *pStr == '(' )
{
const char* pRun = pStr+1;
while( pRun - pStr < nLen-1 )
{
if( *pRun == '\\' )
{
pRun++;
if( pRun - pStr < nLen )
{
char aEsc = 0;
if( *pRun == 'n' )
aEsc = '\n';
else if( *pRun == 'r' )
aEsc = '\r';
else if( *pRun == 't' )
aEsc = '\t';
else if( *pRun == 'b' )
aEsc = '\b';
else if( *pRun == 'f' )
aEsc = '\f';
else if( *pRun == '(' )
aEsc = '(';
else if( *pRun == ')' )
aEsc = ')';
else if( *pRun == '\\' )
aEsc = '\\';
else if( *pRun == '\n' )
{
pRun++;
continue;
}
else if( *pRun == '\r' )
{
pRun++;
if( *pRun == '\n' )
pRun++;
continue;
}
else
{
int i = 0;
while( i++ < 3 && *pRun >= '0' && *pRun <= '7' )
aEsc = 8*aEsc + (*pRun++ - '0');
// move pointer back to last character of octal sequence
pRun--;
}
aBuf.append( aEsc );
}
}
else
aBuf.append( *pRun );
// move pointer to next character
pRun++;
}
}
else if( *pStr == '<' )
{
const char* pRun = pStr+1;
while( *pRun != '>' && pRun - pStr < nLen )
{
char rResult = 0;
if( *pRun >= '0' && *pRun <= '9' )
rResult = char( ( *pRun-'0' ) << 4 );
else if( *pRun >= 'a' && *pRun <= 'f' )
rResult = char( ( *pRun-'a' + 10 ) << 4 );
else if( *pRun >= 'A' && *pRun <= 'F' )
rResult = char( ( *pRun-'A' + 10 ) << 4 );
pRun++;
if( *pRun != '>' && pRun - pStr < nLen )
{
if( *pRun >= '0' && *pRun <= '9' )
rResult |= char( *pRun-'0' );
else if( *pRun >= 'a' && *pRun <= 'f' )
rResult |= char( *pRun-'a' + 10 );
else if( *pRun >= 'A' && *pRun <= 'F' )
rResult |= char( *pRun-'A' + 10 );
}
pRun++;
aBuf.append( rResult );
}
}
return aBuf.makeStringAndClear();
}
PDFNumber::~PDFNumber()
{
}
bool PDFNumber::emit( EmitContext& rWriteContext ) const
{
OStringBuffer aBuf( 32 );
aBuf.append( ' ' );
double fValue = m_fValue;
bool bNeg = false;
int nPrecision = 5;
if( fValue < 0.0 )
{
bNeg = true;
fValue=-fValue;
}
sal_Int64 nInt = static_cast<sal_Int64>(fValue);
fValue -= static_cast<double>(nInt);
// optimizing hardware may lead to a value of 1.0 after the subtraction
if( fValue == 1.0 || log10( 1.0-fValue ) <= -nPrecision )
{
nInt++;
fValue = 0.0;
}
sal_Int64 nFrac = 0;
if( fValue )
{
fValue *= pow( 10.0, static_cast<double>(nPrecision) );
nFrac = static_cast<sal_Int64>(fValue);
}
if( bNeg && ( nInt || nFrac ) )
aBuf.append( '-' );
aBuf.append( nInt );
if( nFrac )
{
int i;
aBuf.append( '.' );
sal_Int64 nBound = static_cast<sal_Int64>(pow( 10.0, nPrecision - 1.0 )+0.5);
for ( i = 0; ( i < nPrecision ) && nFrac; i++ )
{
sal_Int64 nNumb = nFrac / nBound;
nFrac -= nNumb * nBound;
aBuf.append( nNumb );
nBound /= 10;
}
}
return rWriteContext.write( aBuf.getStr(), aBuf.getLength() );
}
PDFEntry* PDFNumber::clone() const
{
return new PDFNumber( m_fValue );
}
PDFBool::~PDFBool()
{
}
bool PDFBool::emit( EmitContext& rWriteContext ) const
{
return m_bValue ? rWriteContext.write( " true", 5 ) : rWriteContext.write( " false", 6 );
}
PDFEntry* PDFBool::clone() const
{
return new PDFBool( m_bValue );
}
PDFNull::~PDFNull()
{
}
bool PDFNull::emit( EmitContext& rWriteContext ) const
{
return rWriteContext.write( " null", 5 );
}
PDFEntry* PDFNull::clone() const
{
return new PDFNull();
}
PDFObjectRef::~PDFObjectRef()
{
}
bool PDFObjectRef::emit( EmitContext& rWriteContext ) const
{
OString aBuf =
" " +
OString::number( sal_Int32( m_nNumber ) ) +
" " +
OString::number( sal_Int32( m_nGeneration ) ) +
" R";
return rWriteContext.write( aBuf.getStr(), aBuf.getLength() );
}
PDFEntry* PDFObjectRef::clone() const
{
return new PDFObjectRef( m_nNumber, m_nGeneration );
}
PDFContainer::~PDFContainer()
{
}
bool PDFContainer::emitSubElements( EmitContext& rWriteContext ) const
{
int nEle = m_aSubElements.size();
for( int i = 0; i < nEle; i++ )
{
if( rWriteContext.m_bDecrypt )
{
const PDFName* pName = dynamic_cast<PDFName*>(m_aSubElements[i].get());
if (pName && pName->m_aName == "Encrypt")
{
i++;
continue;
}
}
if( ! m_aSubElements[i]->emit( rWriteContext ) )
return false;
}
return true;
}
void PDFContainer::cloneSubElements( std::vector<std::unique_ptr<PDFEntry>>& rNewSubElements ) const
{
int nEle = m_aSubElements.size();
for( int i = 0; i < nEle; i++ )
rNewSubElements.emplace_back( m_aSubElements[i]->clone() );
}
PDFObject* PDFContainer::findObject( unsigned int nNumber, unsigned int nGeneration ) const
{
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
PDFObject* pObject = dynamic_cast<PDFObject*>(m_aSubElements[i].get());
if( pObject &&
pObject->m_nNumber == nNumber &&
pObject->m_nGeneration == nGeneration )
{
return pObject;
}
}
return nullptr;
}
PDFArray::~PDFArray()
{
}
bool PDFArray::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( "[", 1 ) )
return false;
if( ! emitSubElements( rWriteContext ) )
return false;
return rWriteContext.write( "]", 1 );
}
PDFEntry* PDFArray::clone() const
{
PDFArray* pNewAr = new PDFArray();
cloneSubElements( pNewAr->m_aSubElements );
return pNewAr;
}
PDFDict::~PDFDict()
{
}
bool PDFDict::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( "<<\n", 3 ) )
return false;
if( ! emitSubElements( rWriteContext ) )
return false;
return rWriteContext.write( "\n>>\n", 4 );
}
void PDFDict::insertValue( const OString& rName, std::unique_ptr<PDFEntry> pValue )
{
if( ! pValue )
eraseValue( rName );
PDFEntry* pValueTmp = nullptr;
std::unordered_map<OString,PDFEntry*>::iterator it = m_aMap.find( rName );
if( it == m_aMap.end() )
{
// new name/value, pair, append it
m_aSubElements.emplace_back(std::make_unique<PDFName>(rName));
m_aSubElements.emplace_back( std::move(pValue) );
pValueTmp = m_aSubElements.back().get();
}
else
{
unsigned int nSub = m_aSubElements.size();
for( unsigned int i = 0; i < nSub; i++ )
if( m_aSubElements[i].get() == it->second )
{
m_aSubElements[i] = std::move(pValue);
pValueTmp = m_aSubElements[i].get();
break;
}
}
assert(pValueTmp);
m_aMap[ rName ] = pValueTmp;
}
void PDFDict::eraseValue( std::string_view rName )
{
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
PDFName* pName = dynamic_cast<PDFName*>(m_aSubElements[i].get());
if( pName && pName->m_aName == rName )
{
for( unsigned int j = i+1; j < nEle; j++ )
{
if( dynamic_cast<PDFComment*>(m_aSubElements[j].get()) == nullptr )
{
// remove and free subelements from vector
m_aSubElements.erase( m_aSubElements.begin()+j );
m_aSubElements.erase( m_aSubElements.begin()+i );
buildMap();
return;
}
}
}
}
}
PDFEntry* PDFDict::buildMap()
{
// clear map
m_aMap.clear();
// build map
unsigned int nEle = m_aSubElements.size();
PDFName* pName = nullptr;
for( unsigned int i = 0; i < nEle; i++ )
{
if( dynamic_cast<PDFComment*>(m_aSubElements[i].get()) == nullptr )
{
if( pName )
{
m_aMap[ pName->m_aName ] = m_aSubElements[i].get();
pName = nullptr;
}
else if( (pName = dynamic_cast<PDFName*>(m_aSubElements[i].get())) == nullptr )
return m_aSubElements[i].get();
}
}
return pName;
}
PDFEntry* PDFDict::clone() const
{
PDFDict* pNewDict = new PDFDict();
cloneSubElements( pNewDict->m_aSubElements );
pNewDict->buildMap();
return pNewDict;
}
PDFStream::~PDFStream()
{
}
bool PDFStream::emit( EmitContext& rWriteContext ) const
{
return rWriteContext.copyOrigBytes( m_nBeginOffset, m_nEndOffset-m_nBeginOffset );
}
PDFEntry* PDFStream::clone() const
{
return new PDFStream( m_nBeginOffset, m_nEndOffset, nullptr );
}
unsigned int PDFStream::getDictLength( const PDFContainer* pContainer ) const
{
if( ! m_pDict )
return 0;
// find /Length entry, can either be a direct or indirect number object
std::unordered_map<OString,PDFEntry*>::const_iterator it =
m_pDict->m_aMap.find( "Length"_ostr );
if( it == m_pDict->m_aMap.end() )
return 0;
PDFNumber* pNum = dynamic_cast<PDFNumber*>(it->second);
if( ! pNum && pContainer )
{
PDFObjectRef* pRef = dynamic_cast<PDFObjectRef*>(it->second);
if( pRef )
{
int nEle = pContainer->m_aSubElements.size();
for (int i = 0; i < nEle; i++)
{
PDFObject* pObj = dynamic_cast<PDFObject*>(pContainer->m_aSubElements[i].get());
if( pObj &&
pObj->m_nNumber == pRef->m_nNumber &&
pObj->m_nGeneration == pRef->m_nGeneration )
{
if( pObj->m_pObject )
pNum = dynamic_cast<PDFNumber*>(pObj->m_pObject);
break;
}
}
}
}
return pNum ? static_cast<unsigned int>(pNum->m_fValue) : 0;
}
PDFObject::~PDFObject()
{
}
bool PDFObject::getDeflatedStream( std::unique_ptr<char[]>& rpStream, unsigned int* pBytes, const PDFContainer* pObjectContainer, EmitContext& rContext ) const
{
bool bIsDeflated = false;
if( m_pStream && m_pStream->m_pDict &&
m_pStream->m_nEndOffset > m_pStream->m_nBeginOffset+15
)
{
unsigned int nOuterStreamLen = m_pStream->m_nEndOffset - m_pStream->m_nBeginOffset;
rpStream.reset(new char[ nOuterStreamLen ]);
unsigned int nRead = rContext.readOrigBytes( m_pStream->m_nBeginOffset, nOuterStreamLen, rpStream.get() );
if( nRead != nOuterStreamLen )
{
rpStream.reset();
*pBytes = 0;
return false;
}
// is there a filter entry ?
std::unordered_map<OString,PDFEntry*>::const_iterator it =
m_pStream->m_pDict->m_aMap.find( "Filter"_ostr );
if( it != m_pStream->m_pDict->m_aMap.end() )
{
PDFName* pFilter = dynamic_cast<PDFName*>(it->second);
if( ! pFilter )
{
PDFArray* pArray = dynamic_cast<PDFArray*>(it->second);
if( pArray && ! pArray->m_aSubElements.empty() )
{
pFilter = dynamic_cast<PDFName*>(pArray->m_aSubElements.front().get());
}
}
// is the (first) filter FlateDecode ?
if (pFilter && pFilter->m_aName == "FlateDecode")
{
bIsDeflated = true;
}
}
// prepare compressed data section
char* pStream = rpStream.get();
if( pStream[0] == 's' )
pStream += 6; // skip "stream"
// skip line end after "stream"
while( *pStream == '\r' || *pStream == '\n' )
pStream++;
// get the compressed length
*pBytes = m_pStream->getDictLength( pObjectContainer );
if( pStream != rpStream.get() )
memmove( rpStream.get(), pStream, *pBytes );
if( rContext.m_bDecrypt )
{
EmitImplData* pEData = getEmitData( rContext );
pEData->decrypt( reinterpret_cast<const sal_uInt8*>(rpStream.get()),
*pBytes,
reinterpret_cast<sal_uInt8*>(rpStream.get()),
m_nNumber,
m_nGeneration
); // decrypt inplace
}
}
else
{
*pBytes = 0;
}
return bIsDeflated;
}
static void unzipToBuffer( char* pBegin, unsigned int nLen,
sal_uInt8** pOutBuf, sal_uInt32* pOutLen )
{
z_stream aZStr;
aZStr.next_in = reinterpret_cast<Bytef *>(pBegin);
aZStr.avail_in = nLen;
aZStr.total_out = aZStr.total_in = 0;
aZStr.zalloc = nullptr;
aZStr.zfree = nullptr;
aZStr.opaque = nullptr;
int err = inflateInit(&aZStr);
const unsigned int buf_increment_size = 16384;
if (auto p = static_cast<sal_uInt8*>(std::realloc(*pOutBuf, buf_increment_size)))
{
*pOutBuf = p;
aZStr.next_out = reinterpret_cast<Bytef*>(*pOutBuf);
aZStr.avail_out = buf_increment_size;
*pOutLen = buf_increment_size;
}
else
err = Z_MEM_ERROR;
while( err != Z_STREAM_END && err >= Z_OK && aZStr.avail_in )
{
err = inflate( &aZStr, Z_NO_FLUSH );
if( aZStr.avail_out == 0 )
{
if( err != Z_STREAM_END )
{
const int nNewAlloc = *pOutLen + buf_increment_size;
if (auto p = static_cast<sal_uInt8*>(std::realloc(*pOutBuf, nNewAlloc)))
{
*pOutBuf = p;
aZStr.next_out = reinterpret_cast<Bytef*>(*pOutBuf + *pOutLen);
aZStr.avail_out = buf_increment_size;
*pOutLen = nNewAlloc;
}
else
err = Z_MEM_ERROR;
}
}
}
if( err == Z_STREAM_END )
{
if( aZStr.avail_out > 0 )
*pOutLen -= aZStr.avail_out;
}
inflateEnd(&aZStr);
if( err < Z_OK )
{
std::free( *pOutBuf );
*pOutBuf = nullptr;
*pOutLen = 0;
}
}
void PDFObject::writeStream( EmitContext& rWriteContext, const PDFFile* pParsedFile ) const
{
if( !m_pStream )
return;
std::unique_ptr<char[]> pStream;
unsigned int nBytes = 0;
if( getDeflatedStream( pStream, &nBytes, pParsedFile, rWriteContext ) && nBytes && rWriteContext.m_bDeflate )
{
sal_uInt8* pOutBytes = nullptr;
sal_uInt32 nOutBytes = 0;
unzipToBuffer( pStream.get(), nBytes, &pOutBytes, &nOutBytes );
rWriteContext.write( pOutBytes, nOutBytes );
std::free( pOutBytes );
}
else if( pStream && nBytes )
rWriteContext.write( pStream.get(), nBytes );
}
bool PDFObject::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( "\n", 1 ) )
return false;
EmitImplData* pEData = getEmitData( rWriteContext );
if( pEData )
pEData->insertXref( m_nNumber, m_nGeneration, rWriteContext.getCurPos() );
OString aBuf =
OString::number( sal_Int32( m_nNumber ) ) +
" " +
OString::number( sal_Int32( m_nGeneration ) ) +
" obj\n";
if( ! rWriteContext.write( aBuf.getStr(), aBuf.getLength() ) )
return false;
if( pEData )
pEData->setDecryptObject( m_nNumber, m_nGeneration );
if( (rWriteContext.m_bDeflate || rWriteContext.m_bDecrypt) && pEData )
{
std::unique_ptr<char[]> pStream;
unsigned int nBytes = 0;
bool bDeflate = getDeflatedStream( pStream, &nBytes, pEData->m_pObjectContainer, rWriteContext );
if( pStream && nBytes )
{
// unzip the stream
sal_uInt8* pOutBytes = nullptr;
sal_uInt32 nOutBytes = 0;
if( bDeflate && rWriteContext.m_bDeflate )
unzipToBuffer( pStream.get(), nBytes, &pOutBytes, &nOutBytes );
else
{
// nothing to deflate, but decryption has happened
pOutBytes = reinterpret_cast<sal_uInt8*>(pStream.get());
nOutBytes = static_cast<sal_uInt32>(nBytes);
}
if( nOutBytes )
{
// clone this object
std::unique_ptr<PDFObject> pClone(static_cast<PDFObject*>(clone()));
// set length in the dictionary to new stream length
std::unique_ptr<PDFNumber> pNewLen(new PDFNumber( double(nOutBytes) ));
pClone->m_pStream->m_pDict->insertValue( "Length"_ostr, std::move(pNewLen) );
if( bDeflate && rWriteContext.m_bDeflate )
{
// delete flatedecode filter
std::unordered_map<OString,PDFEntry*>::const_iterator it =
pClone->m_pStream->m_pDict->m_aMap.find( "Filter"_ostr );
if( it != pClone->m_pStream->m_pDict->m_aMap.end() )
{
PDFName* pFilter = dynamic_cast<PDFName*>(it->second);
if (pFilter && pFilter->m_aName == "FlateDecode")
pClone->m_pStream->m_pDict->eraseValue( "Filter" );
else
{
PDFArray* pArray = dynamic_cast<PDFArray*>(it->second);
if( pArray && ! pArray->m_aSubElements.empty() )
{
pFilter = dynamic_cast<PDFName*>(pArray->m_aSubElements.front().get());
if (pFilter && pFilter->m_aName == "FlateDecode")
{
pArray->m_aSubElements.erase( pArray->m_aSubElements.begin() );
}
}
}
}
}
// write sub elements except stream
bool bRet = true;
unsigned int nEle = pClone->m_aSubElements.size();
for( unsigned int i = 0; i < nEle && bRet; i++ )
{
if( pClone->m_aSubElements[i].get() != pClone->m_pStream )
bRet = pClone->m_aSubElements[i]->emit( rWriteContext );
}
pClone.reset();
// write stream
if( bRet )
bRet = rWriteContext.write("stream\n", 7)
&& rWriteContext.write(pOutBytes, nOutBytes)
&& rWriteContext.write("\nendstream\nendobj\n", 18);
if( pOutBytes != reinterpret_cast<sal_uInt8*>(pStream.get()) )
std::free( pOutBytes );
pEData->setDecryptObject( 0, 0 );
return bRet;
}
if( pOutBytes != reinterpret_cast<sal_uInt8*>(pStream.get()) )
std::free( pOutBytes );
}
}
bool bRet = emitSubElements( rWriteContext ) &&
rWriteContext.write( "\nendobj\n", 8 );
if( pEData )
pEData->setDecryptObject( 0, 0 );
return bRet;
}
PDFEntry* PDFObject::clone() const
{
PDFObject* pNewOb = new PDFObject( m_nNumber, m_nGeneration );
cloneSubElements( pNewOb->m_aSubElements );
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
if( m_aSubElements[i].get() == m_pObject )
pNewOb->m_pObject = pNewOb->m_aSubElements[i].get();
else if( m_aSubElements[i].get() == m_pStream && pNewOb->m_pObject )
{
pNewOb->m_pStream = dynamic_cast<PDFStream*>(pNewOb->m_aSubElements[i].get());
PDFDict* pNewDict = dynamic_cast<PDFDict*>(pNewOb->m_pObject);
if (pNewDict && pNewOb->m_pStream)
pNewOb->m_pStream->m_pDict = pNewDict;
}
}
return pNewOb;
}
PDFTrailer::~PDFTrailer()
{
}
bool PDFTrailer::emit( EmitContext& rWriteContext ) const
{
// get xref offset
unsigned int nXRefPos = rWriteContext.getCurPos();
// begin xref section, object 0 is always free
if( ! rWriteContext.write( "xref\r\n"
"0 1\r\n"
"0000000000 65535 f\r\n", 31 ) )
return false;
// check if we are emitting a complete PDF file
EmitImplData* pEData = getEmitData( rWriteContext );
if( pEData )
{
// emit object xrefs
const EmitImplData::XRefTable& rXRefs = pEData->m_aXRefTable;
EmitImplData::XRefTable::const_iterator section_begin, section_end;
section_begin = rXRefs.begin();
while( section_begin != rXRefs.end() )
{
// find end of continuous object numbers
section_end = section_begin;
unsigned int nLast = section_begin->first;
while( (++section_end) != rXRefs.end() &&
section_end->first == nLast+1 )
nLast = section_end->first;
// write first object number and number of following entries
OStringBuffer aBuf =
OString::number(sal_Int32( section_begin->first ) )
+ " "
+ OString::number(sal_Int32(nLast - section_begin->first + 1))
+ "\r\n";
if( ! rWriteContext.write( aBuf.getStr(), aBuf.getLength() ) )
return false;
while( section_begin != section_end )
{
// write 20 char entry of form
// 0000offset 00gen n\r\n
aBuf.setLength( 0 );
OString aOffset( OString::number( section_begin->second.second ) );
int nPad = 10 - aOffset.getLength();
for( int i = 0; i < nPad; i++ )
aBuf.append( '0' );
aBuf.append( aOffset + " " );
OString aGeneration( OString::number( section_begin->second.first ) );
nPad = 5 - aGeneration.getLength();
for( int i = 0; i < nPad; i++ )
aBuf.append( '0' );
aBuf.append( aGeneration + " n\r\n" );
if( ! rWriteContext.write( aBuf.getStr(), 20 ) )
return false;
++section_begin;
}
}
}
if( ! rWriteContext.write( "trailer\n", 8 ) )
return false;
if( ! emitSubElements( rWriteContext ) )
return false;
if( ! rWriteContext.write( "startxref\n", 10 ) )
return false;
OString aOffset( OString::number( nXRefPos ) );
if( ! rWriteContext.write( aOffset.getStr(), aOffset.getLength() ) )
return false;
return rWriteContext.write( "\n%%EOF\n", 7 );
}
PDFEntry* PDFTrailer::clone() const
{
PDFTrailer* pNewTr = new PDFTrailer();
cloneSubElements( pNewTr->m_aSubElements );
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
if( m_aSubElements[i].get() == m_pDict )
{
pNewTr->m_pDict = dynamic_cast<PDFDict*>(pNewTr->m_aSubElements[i].get());
break;
}
}
return pNewTr;
}
#define ENCRYPTION_KEY_LEN 16
#define ENCRYPTION_BUF_LEN 32
namespace pdfparse {
struct PDFFileImplData
{
bool m_bIsEncrypted;
bool m_bStandardHandler;
sal_uInt32 m_nAlgoVersion;
sal_uInt32 m_nStandardRevision;
sal_uInt32 m_nKeyLength;
sal_uInt8 m_aOEntry[32] = {};
sal_uInt8 m_aUEntry[32] = {};
sal_uInt32 m_nPEntry;
OString m_aDocID;
rtlCipher m_aCipher;
sal_uInt8 m_aDecryptionKey[ENCRYPTION_KEY_LEN+5] = {}; // maximum handled key length
PDFFileImplData() :
m_bIsEncrypted( false ),
m_bStandardHandler( false ),
m_nAlgoVersion( 0 ),
m_nStandardRevision( 0 ),
m_nKeyLength( 0 ),
m_nPEntry( 0 ),
m_aCipher( nullptr )
{
}
~PDFFileImplData()
{
if( m_aCipher )
rtl_cipher_destroyARCFOUR( m_aCipher );
}
};
}
PDFFile::PDFFile()
: m_nMajor( 0 ), m_nMinor( 0 )
{
}
PDFFile::~PDFFile()
{
}
bool PDFFile::isEncrypted() const
{
return impl_getData()->m_bIsEncrypted;
}
bool PDFFile::decrypt( const sal_uInt8* pInBuffer, sal_uInt32 nLen, sal_uInt8* pOutBuffer,
unsigned int nObject, unsigned int nGeneration ) const
{
if( ! isEncrypted() )
return false;
if( ! m_pData->m_aCipher )
m_pData->m_aCipher = rtl_cipher_createARCFOUR( rtl_Cipher_ModeStream );
// modify encryption key
sal_uInt32 i = m_pData->m_nKeyLength;
m_pData->m_aDecryptionKey[i++] = sal_uInt8(nObject&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8((nObject>>8)&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8((nObject>>16)&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8(nGeneration&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8((nGeneration>>8)&0xff);
::std::vector<unsigned char> const aSum(::comphelper::Hash::calculateHash(
m_pData->m_aDecryptionKey, i, ::comphelper::HashType::MD5));
if( i > 16 )
i = 16;
rtlCipherError aErr = rtl_cipher_initARCFOUR( m_pData->m_aCipher,
rtl_Cipher_DirectionDecode,
aSum.data(), i,
nullptr, 0 );
if( aErr == rtl_Cipher_E_None )
aErr = rtl_cipher_decodeARCFOUR( m_pData->m_aCipher,
pInBuffer, nLen,
pOutBuffer, nLen );
return aErr == rtl_Cipher_E_None;
}
const sal_uInt8 nPadString[32] =
{
0x28, 0xBF, 0x4E, 0x5E, 0x4E, 0x75, 0x8A, 0x41, 0x64, 0x00, 0x4E, 0x56, 0xFF, 0xFA, 0x01, 0x08,
0x2E, 0x2E, 0x00, 0xB6, 0xD0, 0x68, 0x3E, 0x80, 0x2F, 0x0C, 0xA9, 0xFE, 0x64, 0x53, 0x69, 0x7A
};
static void pad_or_truncate_to_32( const OString& rStr, char* pBuffer )
{
int nLen = rStr.getLength();
if( nLen > 32 )
nLen = 32;
const char* pStr = rStr.getStr();
memcpy( pBuffer, pStr, nLen );
int i = 0;
while( nLen < 32 )
pBuffer[nLen++] = nPadString[i++];
}
// pass at least pData->m_nKeyLength bytes in
static sal_uInt32 password_to_key( const OString& rPwd, sal_uInt8* pOutKey, PDFFileImplData const * pData, bool bComputeO )
{
// see PDF reference 1.4 Algorithm 3.2
// encrypt pad string
char aPadPwd[ENCRYPTION_BUF_LEN];
pad_or_truncate_to_32( rPwd, aPadPwd );
::comphelper::Hash aDigest(::comphelper::HashType::MD5);
aDigest.update(reinterpret_cast<unsigned char const*>(aPadPwd), sizeof(aPadPwd));
if( ! bComputeO )
{
aDigest.update(pData->m_aOEntry, 32);
sal_uInt8 aPEntry[4];
aPEntry[0] = static_cast<sal_uInt8>(pData->m_nPEntry & 0xff);
aPEntry[1] = static_cast<sal_uInt8>((pData->m_nPEntry >> 8 ) & 0xff);
aPEntry[2] = static_cast<sal_uInt8>((pData->m_nPEntry >> 16) & 0xff);
aPEntry[3] = static_cast<sal_uInt8>((pData->m_nPEntry >> 24) & 0xff);
aDigest.update(aPEntry, sizeof(aPEntry));
aDigest.update(reinterpret_cast<unsigned char const*>(pData->m_aDocID.getStr()), pData->m_aDocID.getLength());
}
::std::vector<unsigned char> nSum(aDigest.finalize());
if( pData->m_nStandardRevision == 3 )
{
for( int i = 0; i < 50; i++ )
{
nSum = ::comphelper::Hash::calculateHash(nSum.data(), nSum.size(),
::comphelper::HashType::MD5);
}
}
sal_uInt32 nLen = pData->m_nKeyLength;
if( nLen > RTL_DIGEST_LENGTH_MD5 )
nLen = RTL_DIGEST_LENGTH_MD5;
memcpy( pOutKey, nSum.data(), nLen );
return nLen;
}
static bool check_user_password( const OString& rPwd, PDFFileImplData* pData )
{
// see PDF reference 1.4 Algorithm 3.6
bool bValid = false;
sal_uInt8 aKey[ENCRYPTION_KEY_LEN];
sal_uInt32 nKeyLen = password_to_key( rPwd, aKey, pData, false );
// save (at this time potential) decryption key for later use
memcpy( pData->m_aDecryptionKey, aKey, nKeyLen );
if( pData->m_nStandardRevision == 2 )
{
sal_uInt8 nEncryptedEntry[ENCRYPTION_BUF_LEN] = {};
// see PDF reference 1.4 Algorithm 3.4
// encrypt pad string
if (rtl_cipher_initARCFOUR( pData->m_aCipher, rtl_Cipher_DirectionEncode,
aKey, nKeyLen,
nullptr, 0 )
!= rtl_Cipher_E_None)
{
return false; //TODO: differentiate "failed to decrypt" from "wrong password"
}
rtl_cipher_encodeARCFOUR( pData->m_aCipher, nPadString, sizeof( nPadString ),
nEncryptedEntry, sizeof( nEncryptedEntry ) );
bValid = (memcmp( nEncryptedEntry, pData->m_aUEntry, 32 ) == 0);
}
else if( pData->m_nStandardRevision == 3 )
{
// see PDF reference 1.4 Algorithm 3.5
::comphelper::Hash aDigest(::comphelper::HashType::MD5);
aDigest.update(nPadString, sizeof(nPadString));
aDigest.update(reinterpret_cast<unsigned char const*>(pData->m_aDocID.getStr()), pData->m_aDocID.getLength());
::std::vector<unsigned char> nEncryptedEntry(aDigest.finalize());
if (rtl_cipher_initARCFOUR( pData->m_aCipher, rtl_Cipher_DirectionEncode,
aKey, sizeof(aKey), nullptr, 0 )
!= rtl_Cipher_E_None)
{
return false; //TODO: differentiate "failed to decrypt" from "wrong password"
}
rtl_cipher_encodeARCFOUR( pData->m_aCipher,
nEncryptedEntry.data(), 16,
nEncryptedEntry.data(), 16 ); // encrypt in place
for( int i = 1; i <= 19; i++ ) // do it 19 times, start with 1
{
sal_uInt8 aTempKey[ENCRYPTION_KEY_LEN];
for( size_t j = 0; j < sizeof(aTempKey); j++ )
aTempKey[j] = static_cast<sal_uInt8>( aKey[j] ^ i );
if (rtl_cipher_initARCFOUR( pData->m_aCipher, rtl_Cipher_DirectionEncode,
aTempKey, sizeof(aTempKey), nullptr, 0 )
!= rtl_Cipher_E_None)
{
return false; //TODO: differentiate "failed to decrypt" from "wrong password"
}
rtl_cipher_encodeARCFOUR( pData->m_aCipher,
nEncryptedEntry.data(), 16,
nEncryptedEntry.data(), 16 ); // encrypt in place
}
bValid = (memcmp( nEncryptedEntry.data(), pData->m_aUEntry, 16 ) == 0);
}
return bValid;
}
bool PDFFile::usesSupportedEncryptionFormat() const
{
return m_pData->m_bStandardHandler &&
m_pData->m_nAlgoVersion >= 1 &&
m_pData->m_nAlgoVersion <= 2 &&
m_pData->m_nStandardRevision >= 2 &&
m_pData->m_nStandardRevision <= 3;
}
bool PDFFile::setupDecryptionData( const OString& rPwd ) const
{
if( !impl_getData()->m_bIsEncrypted )
return rPwd.isEmpty();
// check if we can handle this encryption at all
if( ! usesSupportedEncryptionFormat() )
return false;
if( ! m_pData->m_aCipher )
m_pData->m_aCipher = rtl_cipher_createARCFOUR(rtl_Cipher_ModeStream);
// first try user password
bool bValid = check_user_password( rPwd, m_pData.get() );
if( ! bValid )
{
// try owner password
// see PDF reference 1.4 Algorithm 3.7
sal_uInt8 aKey[ENCRYPTION_KEY_LEN];
sal_uInt8 nPwd[ENCRYPTION_BUF_LEN] = {};
sal_uInt32 nKeyLen = password_to_key( rPwd, aKey, m_pData.get(), true );
if( m_pData->m_nStandardRevision == 2 )
{
if (rtl_cipher_initARCFOUR( m_pData->m_aCipher, rtl_Cipher_DirectionDecode,
aKey, nKeyLen, nullptr, 0 )
!= rtl_Cipher_E_None)
{
return false; //TODO: differentiate "failed to decrypt" from "wrong password"
}
rtl_cipher_decodeARCFOUR( m_pData->m_aCipher,
m_pData->m_aOEntry, 32,
nPwd, 32 );
}
else if( m_pData->m_nStandardRevision == 3 )
{
memcpy( nPwd, m_pData->m_aOEntry, 32 );
for( int i = 19; i >= 0; i-- )
{
sal_uInt8 nTempKey[ENCRYPTION_KEY_LEN];
for( size_t j = 0; j < sizeof(nTempKey); j++ )
nTempKey[j] = sal_uInt8(aKey[j] ^ i);
if (rtl_cipher_initARCFOUR( m_pData->m_aCipher, rtl_Cipher_DirectionDecode,
nTempKey, nKeyLen, nullptr, 0 )
!= rtl_Cipher_E_None)
{
return false; //TODO: differentiate "failed to decrypt" from "wrong password"
}
rtl_cipher_decodeARCFOUR( m_pData->m_aCipher,
nPwd, 32,
nPwd, 32 ); // decrypt inplace
}
}
bValid = check_user_password( OString( reinterpret_cast<char*>(nPwd), 32 ), m_pData.get() );
}
return bValid;
}
PDFFileImplData* PDFFile::impl_getData() const
{
if( m_pData )
return m_pData.get();
m_pData.reset( new PDFFileImplData );
// check for encryption dict in a trailer
unsigned int nElements = m_aSubElements.size();
while( nElements-- > 0 )
{
PDFTrailer* pTrailer = dynamic_cast<PDFTrailer*>(m_aSubElements[nElements].get());
if( pTrailer && pTrailer->m_pDict )
{
// search doc id
PDFDict::Map::iterator doc_id = pTrailer->m_pDict->m_aMap.find( "ID"_ostr );
if( doc_id != pTrailer->m_pDict->m_aMap.end() )
{
PDFArray* pArr = dynamic_cast<PDFArray*>(doc_id->second);
if( pArr && !pArr->m_aSubElements.empty() )
{
PDFString* pStr = dynamic_cast<PDFString*>(pArr->m_aSubElements[0].get());
if( pStr )
m_pData->m_aDocID = pStr->getFilteredString();
#if OSL_DEBUG_LEVEL > 0
OUStringBuffer aTmp;
for( int i = 0; i < m_pData->m_aDocID.getLength(); i++ )
aTmp.append(static_cast<sal_Int32>(sal_uInt8(m_pData->m_aDocID[i])), 16);
SAL_INFO("sdext.pdfimport.pdfparse", "DocId is <" << aTmp.makeStringAndClear() << ">");
#endif
}
}
// search Encrypt entry
PDFDict::Map::iterator enc =
pTrailer->m_pDict->m_aMap.find( "Encrypt"_ostr );
if( enc != pTrailer->m_pDict->m_aMap.end() )
{
PDFDict* pDict = dynamic_cast<PDFDict*>(enc->second);
if( ! pDict )
{
PDFObjectRef* pRef = dynamic_cast<PDFObjectRef*>(enc->second);
if( pRef )
{
PDFObject* pObj = findObject( pRef );
if( pObj && pObj->m_pObject )
pDict = dynamic_cast<PDFDict*>(pObj->m_pObject);
}
}
if( pDict )
{
PDFDict::Map::iterator filter = pDict->m_aMap.find( "Filter"_ostr );
PDFDict::Map::iterator version = pDict->m_aMap.find( "V"_ostr );
PDFDict::Map::iterator len = pDict->m_aMap.find( "Length"_ostr );
PDFDict::Map::iterator o_ent = pDict->m_aMap.find( "O"_ostr );
PDFDict::Map::iterator u_ent = pDict->m_aMap.find( "U"_ostr );
PDFDict::Map::iterator r_ent = pDict->m_aMap.find( "R"_ostr );
PDFDict::Map::iterator p_ent = pDict->m_aMap.find( "P"_ostr );
if( filter != pDict->m_aMap.end() )
{
m_pData->m_bIsEncrypted = true;
m_pData->m_nKeyLength = 5;
if( version != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(version->second);
if( pNum )
m_pData->m_nAlgoVersion = static_cast<sal_uInt32>(pNum->m_fValue);
}
if( m_pData->m_nAlgoVersion >= 3 )
m_pData->m_nKeyLength = 16;
if( len != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(len->second);
if( pNum )
m_pData->m_nKeyLength = static_cast<sal_uInt32>(pNum->m_fValue) / 8;
}
PDFName* pFilter = dynamic_cast<PDFName*>(filter->second);
if( pFilter && pFilter->getFilteredName() == "Standard" )
m_pData->m_bStandardHandler = true;
if( o_ent != pDict->m_aMap.end() )
{
PDFString* pString = dynamic_cast<PDFString*>(o_ent->second);
if( pString )
{
OString aEnt = pString->getFilteredString();
if( aEnt.getLength() == 32 )
memcpy( m_pData->m_aOEntry, aEnt.getStr(), 32 );
#if OSL_DEBUG_LEVEL > 0
else
{
OUStringBuffer aTmp;
for( int i = 0; i < aEnt.getLength(); i++ )
aTmp.append(" " + OUString::number(sal_uInt8(aEnt[i]), 16));
SAL_WARN("sdext.pdfimport.pdfparse",
"O entry has length " << static_cast<int>(aEnt.getLength()) << ", should be 32 <" << aTmp.makeStringAndClear() << ">" );
}
#endif
}
}
if( u_ent != pDict->m_aMap.end() )
{
PDFString* pString = dynamic_cast<PDFString*>(u_ent->second);
if( pString )
{
OString aEnt = pString->getFilteredString();
if( aEnt.getLength() == 32 )
memcpy( m_pData->m_aUEntry, aEnt.getStr(), 32 );
#if OSL_DEBUG_LEVEL > 0
else
{
OUStringBuffer aTmp;
for( int i = 0; i < aEnt.getLength(); i++ )
aTmp.append(" " + OUString::number(sal_uInt8(aEnt[i]), 16));
SAL_WARN("sdext.pdfimport.pdfparse",
"U entry has length " << static_cast<int>(aEnt.getLength()) << ", should be 32 <" << aTmp.makeStringAndClear() << ">" );
}
#endif
}
}
if( r_ent != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(r_ent->second);
if( pNum )
m_pData->m_nStandardRevision = static_cast<sal_uInt32>(pNum->m_fValue);
}
if( p_ent != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(p_ent->second);
if( pNum )
m_pData->m_nPEntry = static_cast<sal_uInt32>(static_cast<sal_Int32>(pNum->m_fValue));
SAL_INFO("sdext.pdfimport.pdfparse", "p entry is " << m_pData->m_nPEntry );
}
SAL_INFO("sdext.pdfimport.pdfparse", "Encryption dict: sec handler: " << (pFilter ? pFilter->getFilteredName() : u"<unknown>"_ustr) << ", version = " << static_cast<int>(m_pData->m_nAlgoVersion) << ", revision = " << static_cast<int>(m_pData->m_nStandardRevision) << ", key length = " << m_pData->m_nKeyLength );
break;
}
}
}
}
}
return m_pData.get();
}
bool PDFFile::emit( EmitContext& rWriteContext ) const
{
setEmitData( rWriteContext, new EmitImplData( this ) );
OString aBuf =
"%PDF-" +
OString::number( sal_Int32( m_nMajor ) ) +
"." +
OString::number( sal_Int32( m_nMinor ) ) +
"\n";
if( ! rWriteContext.write( aBuf.getStr(), aBuf.getLength() ) )
return false;
return emitSubElements( rWriteContext );
}
PDFEntry* PDFFile::clone() const
{
PDFFile* pNewFl = new PDFFile();
pNewFl->m_nMajor = m_nMajor;
pNewFl->m_nMinor = m_nMinor;
cloneSubElements( pNewFl->m_aSubElements );
return pNewFl;
}
PDFPart::~PDFPart()
{
}
bool PDFPart::emit( EmitContext& rWriteContext ) const
{
return emitSubElements( rWriteContext );
}
PDFEntry* PDFPart::clone() const
{
PDFPart* pNewPt = new PDFPart();
cloneSubElements( pNewPt->m_aSubElements );
return pNewPt;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V530 The return value of function 'append' is required to be utilized.
↑ V1086 A call of the 'memcmp' function will lead to underflow of the buffer 'pData->m_aUEntry'.