/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <drawinglayer/primitive3d/sdrextrudelathetools3d.hxx>
#include <osl/diagnose.h>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/point/b3dpoint.hxx>
#include <basegfx/polygon/b3dpolygon.hxx>
#include <basegfx/polygon/b3dpolygontools.hxx>
#include <basegfx/polygon/b3dpolypolygontools.hxx>
#include <basegfx/range/b3drange.hxx>
#include <basegfx/matrix/b3dhommatrix.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <drawinglayer/geometry/viewinformation3d.hxx>
#include <numeric>
// decomposition helpers for extrude/lathe (rotation) objects
namespace
{
// common helpers
basegfx::B2DPolyPolygon impScalePolyPolygonOnCenter(
const basegfx::B2DPolyPolygon& rSource,
double fScale)
{
basegfx::B2DPolyPolygon aRetval(rSource);
if(!basegfx::fTools::equalZero(fScale))
{
const basegfx::B2DRange aRange(basegfx::utils::getRange(rSource));
const basegfx::B2DPoint aCenter(aRange.getCenter());
basegfx::B2DHomMatrix aTrans;
aTrans.translate(-aCenter.getX(), -aCenter.getY());
aTrans.scale(fScale, fScale);
aTrans.translate(aCenter.getX(), aCenter.getY());
aRetval.transform(aTrans);
}
return aRetval;
}
void impGetOuterPolyPolygon(
basegfx::B2DPolyPolygon& rPolygon,
basegfx::B2DPolyPolygon& rOuterPolyPolygon,
double fOffset,
bool bCharacterMode)
{
rOuterPolyPolygon = rPolygon;
if (fOffset <= 0.0 || basegfx::fTools::equalZero(fOffset))
return;
if(bCharacterMode)
{
// grow the outside polygon and scale all polygons to original size. This is done
// to avoid a shrink which potentially would lead to self-intersections, but changes
// the original polygon -> not a precision step, so e.g. not usable for charts
const basegfx::B2DRange aRange(basegfx::utils::getRange(rPolygon));
rPolygon = basegfx::utils::growInNormalDirection(rPolygon, fOffset);
const basegfx::B2DRange aGrownRange(basegfx::utils::getRange(rPolygon));
const double fScaleX(basegfx::fTools::equalZero(aGrownRange.getWidth()) ? 1.0 : aRange.getWidth() / aGrownRange.getWidth());
const double fScaleY(basegfx::fTools::equalZero(aGrownRange.getHeight())? 1.0 : aRange.getHeight() / aGrownRange.getHeight());
basegfx::B2DHomMatrix aScaleTrans;
aScaleTrans.translate(-aGrownRange.getMinX(), -aGrownRange.getMinY());
aScaleTrans.scale(fScaleX, fScaleY);
aScaleTrans.translate(aRange.getMinX(), aRange.getMinY());
rPolygon.transform(aScaleTrans);
rOuterPolyPolygon.transform(aScaleTrans);
}
else
{
// use more precision, shrink the outer polygons. Since this may lead to self-intersections,
// some kind of correction should be applied here after that step
rOuterPolyPolygon = basegfx::utils::growInNormalDirection(rPolygon, -fOffset);
// basegfx::utils::correctGrowShrinkPolygonPair(rPolygon, rOuterPolyPolygon);
}
}
void impAddInBetweenFill(
basegfx::B3DPolyPolygon& rTarget,
const basegfx::B3DPolyPolygon& rPolA,
const basegfx::B3DPolyPolygon& rPolB,
double fTexVerStart,
double fTexVerStop,
bool bCreateNormals,
bool bCreateTextureCoordinates)
{
OSL_ENSURE(rPolA.count() == rPolB.count(), "impAddInBetweenFill: unequally sized polygons (!)");
const sal_uInt32 nPolygonCount(std::min(rPolA.count(), rPolB.count()));
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
const basegfx::B3DPolygon& aSubA(rPolA.getB3DPolygon(a));
const basegfx::B3DPolygon& aSubB(rPolB.getB3DPolygon(a));
OSL_ENSURE(aSubA.count() == aSubB.count(), "impAddInBetweenFill: unequally sized polygons (!)");
const sal_uInt32 nPointCount(std::min(aSubA.count(), aSubB.count()));
if(nPointCount)
{
const sal_uInt32 nEdgeCount(aSubA.isClosed() ? nPointCount : nPointCount - 1);
double fTexHorMultiplicatorA(0.0), fTexHorMultiplicatorB(0.0);
double fPolygonPosA(0.0), fPolygonPosB(0.0);
if(bCreateTextureCoordinates)
{
const double fPolygonLengthA(basegfx::utils::getLength(aSubA));
fTexHorMultiplicatorA = basegfx::fTools::equalZero(fPolygonLengthA) ? 1.0 : 1.0 / fPolygonLengthA;
const double fPolygonLengthB(basegfx::utils::getLength(aSubB));
fTexHorMultiplicatorB = basegfx::fTools::equalZero(fPolygonLengthB) ? 1.0 : 1.0 / fPolygonLengthB;
}
for(sal_uInt32 b(0); b < nEdgeCount; b++)
{
const sal_uInt32 nIndexA(b);
const sal_uInt32 nIndexB((b + 1) % nPointCount);
const basegfx::B3DPoint aStartA(aSubA.getB3DPoint(nIndexA));
const basegfx::B3DPoint aEndA(aSubA.getB3DPoint(nIndexB));
const basegfx::B3DPoint aStartB(aSubB.getB3DPoint(nIndexA));
const basegfx::B3DPoint aEndB(aSubB.getB3DPoint(nIndexB));
basegfx::B3DPolygon aNew;
aNew.setClosed(true);
aNew.append(aStartA);
aNew.append(aStartB);
aNew.append(aEndB);
aNew.append(aEndA);
if(bCreateNormals)
{
aNew.setNormal(0, aSubA.getNormal(nIndexA));
aNew.setNormal(1, aSubB.getNormal(nIndexA));
aNew.setNormal(2, aSubB.getNormal(nIndexB));
aNew.setNormal(3, aSubA.getNormal(nIndexB));
}
if(bCreateTextureCoordinates)
{
const double fRelTexAL(fPolygonPosA * fTexHorMultiplicatorA);
const double fEdgeLengthA(basegfx::B3DVector(aEndA - aStartA).getLength());
fPolygonPosA += fEdgeLengthA;
const double fRelTexAR(fPolygonPosA * fTexHorMultiplicatorA);
const double fRelTexBL(fPolygonPosB * fTexHorMultiplicatorB);
const double fEdgeLengthB(basegfx::B3DVector(aEndB - aStartB).getLength());
fPolygonPosB += fEdgeLengthB;
const double fRelTexBR(fPolygonPosB * fTexHorMultiplicatorB);
aNew.setTextureCoordinate(0, basegfx::B2DPoint(fRelTexAL, fTexVerStart));
aNew.setTextureCoordinate(1, basegfx::B2DPoint(fRelTexBL, fTexVerStop));
aNew.setTextureCoordinate(2, basegfx::B2DPoint(fRelTexBR, fTexVerStop));
aNew.setTextureCoordinate(3, basegfx::B2DPoint(fRelTexAR, fTexVerStart));
}
rTarget.append(aNew);
}
}
}
}
void impSetNormal(
basegfx::B3DPolyPolygon& rCandidate,
const basegfx::B3DVector& rNormal)
{
for(sal_uInt32 a(0); a < rCandidate.count(); a++)
{
basegfx::B3DPolygon aSub(rCandidate.getB3DPolygon(a));
for(sal_uInt32 b(0); b < aSub.count(); b++)
{
aSub.setNormal(b, rNormal);
}
rCandidate.setB3DPolygon(a, aSub);
}
}
void impCreateInBetweenNormals(
basegfx::B3DPolyPolygon& rPolA,
basegfx::B3DPolyPolygon& rPolB)
{
OSL_ENSURE(rPolA.count() == rPolB.count(), "sdrExtrudePrimitive3D: unequally sized polygons (!)");
const sal_uInt32 nPolygonCount(std::min(rPolA.count(), rPolB.count()));
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
basegfx::B3DPolygon aSubA(rPolA.getB3DPolygon(a));
basegfx::B3DPolygon aSubB(rPolB.getB3DPolygon(a));
OSL_ENSURE(aSubA.count() == aSubB.count(), "sdrExtrudePrimitive3D: unequally sized polygons (!)");
const sal_uInt32 nPointCount(std::min(aSubA.count(), aSubB.count()));
if(nPointCount)
{
basegfx::B3DPoint aPrevA(aSubA.getB3DPoint(nPointCount - 1));
basegfx::B3DPoint aCurrA(aSubA.getB3DPoint(0));
const bool bClosed(aSubA.isClosed());
for(sal_uInt32 b(0); b < nPointCount; b++)
{
const sal_uInt32 nIndNext((b + 1) % nPointCount);
const basegfx::B3DPoint aNextA(aSubA.getB3DPoint(nIndNext));
const basegfx::B3DPoint aCurrB(aSubB.getB3DPoint(b));
// vector to back
basegfx::B3DVector aDepth(aCurrB - aCurrA);
aDepth.normalize();
if(aDepth.equalZero())
{
// no difference, try to get depth from next point
const basegfx::B3DPoint aNextB(aSubB.getB3DPoint(nIndNext));
aDepth = aNextB - aNextA;
aDepth.normalize();
}
// vector to left (correct for non-closed lines)
const bool bFirstAndNotClosed(!bClosed && 0 == b);
basegfx::B3DVector aLeft(bFirstAndNotClosed ? aCurrA - aNextA : aPrevA - aCurrA);
aLeft.normalize();
// create left normal
const basegfx::B3DVector aNormalLeft(aDepth.getPerpendicular(aLeft));
// smooth horizontal normals
{
// vector to right (correct for non-closed lines)
const bool bLastAndNotClosed(!bClosed && b + 1 == nPointCount);
basegfx::B3DVector aRight(bLastAndNotClosed ? aCurrA - aPrevA : aNextA - aCurrA);
aRight.normalize();
// create right normal
const basegfx::B3DVector aNormalRight(aRight.getPerpendicular(aDepth));
// create smoothed in-between normal
basegfx::B3DVector aNewNormal(aNormalLeft + aNormalRight);
aNewNormal.normalize();
// set as new normal at polygons
aSubA.setNormal(b, aNewNormal);
aSubB.setNormal(b, aNewNormal);
}
// prepare next step
aPrevA = aCurrA;
aCurrA = aNextA;
}
rPolA.setB3DPolygon(a, aSubA);
rPolB.setB3DPolygon(a, aSubB);
}
}
}
void impMixNormals(
basegfx::B3DPolyPolygon& rPolA,
const basegfx::B3DPolyPolygon& rPolB,
double fWeightA)
{
const double fWeightB(1.0 - fWeightA);
OSL_ENSURE(rPolA.count() == rPolB.count(), "sdrExtrudePrimitive3D: unequally sized polygons (!)");
const sal_uInt32 nPolygonCount(std::min(rPolA.count(), rPolB.count()));
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
basegfx::B3DPolygon aSubA(rPolA.getB3DPolygon(a));
const basegfx::B3DPolygon& aSubB(rPolB.getB3DPolygon(a));
OSL_ENSURE(aSubA.count() == aSubB.count(), "sdrExtrudePrimitive3D: unequally sized polygons (!)");
const sal_uInt32 nPointCount(std::min(aSubA.count(), aSubB.count()));
for(sal_uInt32 b(0); b < nPointCount; b++)
{
const basegfx::B3DVector aVA(aSubA.getNormal(b) * fWeightA);
const basegfx::B3DVector aVB(aSubB.getNormal(b) * fWeightB);
basegfx::B3DVector aVNew(aVA + aVB);
aVNew.normalize();
aSubA.setNormal(b, aVNew);
}
rPolA.setB3DPolygon(a, aSubA);
}
}
bool impHasCutWith(const basegfx::B2DPolygon& rPoly, const basegfx::B2DPoint& rStart, const basegfx::B2DPoint& rEnd)
{
// polygon is closed, one of the points is a member
const sal_uInt32 nPointCount(rPoly.count());
if(!nPointCount)
return false;
basegfx::B2DPoint aCurrent(rPoly.getB2DPoint(0));
const basegfx::B2DVector aVector(rEnd - rStart);
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const basegfx::B2DPoint aNext(rPoly.getB2DPoint(nNextIndex));
const basegfx::B2DVector aEdgeVector(aNext - aCurrent);
if(basegfx::utils::findCut(
rStart, aVector,
aCurrent, aEdgeVector) != CutFlagValue::NONE)
{
return true;
}
aCurrent = aNext;
}
return false;
}
} // end of anonymous namespace
namespace drawinglayer::primitive3d
{
void createLatheSlices(
Slice3DVector& rSliceVector,
const basegfx::B2DPolyPolygon& rSource,
double fBackScale,
double fDiagonal,
double fRotation,
sal_uInt32 nSteps,
bool bCharacterMode,
bool bCloseFront,
bool bCloseBack)
{
if(basegfx::fTools::equalZero(fRotation) || 0 == nSteps)
{
// no rotation or no steps, just one plane
rSliceVector.emplace_back(rSource, basegfx::B3DHomMatrix());
}
else
{
const bool bBackScale(!basegfx::fTools::equal(fBackScale, 1.0));
const bool bClosedRotation(!bBackScale && basegfx::fTools::equal(fRotation, 2 * M_PI));
basegfx::B2DPolyPolygon aFront(rSource);
basegfx::B2DPolyPolygon aBack(rSource);
basegfx::B3DHomMatrix aTransformBack;
basegfx::B2DPolyPolygon aOuterBack;
if(bClosedRotation)
{
bCloseFront = bCloseBack = false;
}
if(bBackScale)
{
// avoid null zoom
if(basegfx::fTools::equalZero(fBackScale))
{
fBackScale = 0.000001;
}
// back is scaled compared to front, create scaled version
aBack = impScalePolyPolygonOnCenter(aBack, fBackScale);
}
if(bCloseFront || bCloseBack)
{
const basegfx::B2DRange aBaseRange(basegfx::utils::getRange(aFront));
const double fOuterLength(aBaseRange.getMaxX() * fRotation);
const double fInnerLength(aBaseRange.getMinX() * fRotation);
const double fAverageLength((fOuterLength + fInnerLength) * 0.5);
if(bCloseFront)
{
const double fOffsetLen((fAverageLength / 12.0) * fDiagonal);
basegfx::B2DPolyPolygon aOuterFront;
impGetOuterPolyPolygon(aFront, aOuterFront, fOffsetLen, bCharacterMode);
basegfx::B3DHomMatrix aTransform;
aTransform.translate(0.0, 0.0, fOffsetLen);
rSliceVector.emplace_back(aOuterFront, aTransform, SLICETYPE3D_FRONTCAP);
}
if(bCloseBack)
{
const double fOffsetLen((fAverageLength / 12.0) * fDiagonal);
impGetOuterPolyPolygon(aBack, aOuterBack, fOffsetLen, bCharacterMode);
aTransformBack.translate(0.0, 0.0, -fOffsetLen);
aTransformBack.rotate(0.0, fRotation, 0.0);
}
}
// add start polygon (a = 0)
if(!bClosedRotation)
{
rSliceVector.emplace_back(aFront, basegfx::B3DHomMatrix());
}
// create segments (a + 1 .. nSteps)
const double fStepSize(1.0 / static_cast<double>(nSteps));
for(sal_uInt32 a(0); a < nSteps; a++)
{
const double fStep(static_cast<double>(a + 1) * fStepSize);
basegfx::B2DPolyPolygon aNewPoly(bBackScale ? basegfx::utils::interpolate(aFront, aBack, fStep) : aFront);
basegfx::B3DHomMatrix aNewMat;
aNewMat.rotate(0.0, fRotation * fStep, 0.0);
rSliceVector.emplace_back(aNewPoly, aNewMat);
}
if(bCloseBack)
{
rSliceVector.emplace_back(aOuterBack, aTransformBack, SLICETYPE3D_BACKCAP);
}
}
}
void createExtrudeSlices(
Slice3DVector& rSliceVector,
const basegfx::B2DPolyPolygon& rSource,
double fBackScale,
double fDiagonal,
double fDepth,
bool bCharacterMode,
bool bCloseFront,
bool bCloseBack)
{
if(basegfx::fTools::equalZero(fDepth))
{
// no depth, just one plane
rSliceVector.emplace_back(rSource, basegfx::B3DHomMatrix());
}
else
{
// there is depth, create Polygons for front,back and their default depth positions
basegfx::B2DPolyPolygon aFront(rSource);
basegfx::B2DPolyPolygon aBack(rSource);
const bool bBackScale(!basegfx::fTools::equal(fBackScale, 1.0));
double fZFront(fDepth); // default depth for aFront
double fZBack(0.0); // default depth for aBack
basegfx::B2DPolyPolygon aOuterBack;
if(bBackScale)
{
// avoid null zoom
if(basegfx::fTools::equalZero(fBackScale))
{
fBackScale = 0.000001;
}
// aFront is scaled compared to aBack, create scaled version
aFront = impScalePolyPolygonOnCenter(aFront, fBackScale);
}
if(bCloseFront)
{
const double fOffset(fDepth * fDiagonal * 0.5);
fZFront = fDepth - fOffset;
basegfx::B2DPolyPolygon aOuterFront;
impGetOuterPolyPolygon(aFront, aOuterFront, fOffset, bCharacterMode);
basegfx::B3DHomMatrix aTransformFront;
aTransformFront.translate(0.0, 0.0, fDepth);
rSliceVector.emplace_back(aOuterFront, aTransformFront, SLICETYPE3D_FRONTCAP);
}
if(bCloseBack)
{
const double fOffset(fDepth * fDiagonal * 0.5);
fZBack = fOffset;
impGetOuterPolyPolygon(aBack, aOuterBack, fOffset, bCharacterMode);
}
// add front and back polygons at evtl. changed depths
{
basegfx::B3DHomMatrix aTransformA, aTransformB;
aTransformA.translate(0.0, 0.0, fZFront);
rSliceVector.emplace_back(aFront, aTransformA);
aTransformB.translate(0.0, 0.0, fZBack);
rSliceVector.emplace_back(aBack, aTransformB);
}
if(bCloseBack)
{
rSliceVector.emplace_back(aOuterBack, basegfx::B3DHomMatrix(), SLICETYPE3D_BACKCAP);
}
}
}
basegfx::B3DPolyPolygon extractHorizontalLinesFromSlice(const Slice3DVector& rSliceVector, bool bCloseHorLines)
{
basegfx::B3DPolyPolygon aRetval;
const sal_uInt32 nNumSlices(rSliceVector.size());
if(nNumSlices)
{
const sal_uInt32 nSlideSubPolygonCount(rSliceVector[0].getB3DPolyPolygon().count());
for(sal_uInt32 b(0); b < nSlideSubPolygonCount; b++)
{
const sal_uInt32 nSubPolygonPointCount(rSliceVector[0].getB3DPolyPolygon().getB3DPolygon(b).count());
for(sal_uInt32 c(0); c < nSubPolygonPointCount; c++)
{
basegfx::B3DPolygon aNew;
for(sal_uInt32 d(0); d < nNumSlices; d++)
{
const bool bSamePolygonCount(nSlideSubPolygonCount == rSliceVector[d].getB3DPolyPolygon().count());
const bool bSamePointCount(nSubPolygonPointCount == rSliceVector[d].getB3DPolyPolygon().getB3DPolygon(b).count());
if(bSamePolygonCount && bSamePointCount)
{
aNew.append(rSliceVector[d].getB3DPolyPolygon().getB3DPolygon(b).getB3DPoint(c));
}
else
{
OSL_ENSURE(bSamePolygonCount, "Slice tools::PolyPolygon with different Polygon count (!)");
OSL_ENSURE(bSamePointCount, "Slice Polygon with different point count (!)");
}
}
aNew.setClosed(bCloseHorLines);
aRetval.append(aNew);
}
}
}
return aRetval;
}
basegfx::B3DPolyPolygon extractVerticalLinesFromSlice(const Slice3DVector& rSliceVector)
{
basegfx::B3DPolyPolygon aRetval;
const sal_uInt32 nNumSlices(rSliceVector.size());
for(sal_uInt32 a(0); a < nNumSlices; a++)
{
aRetval.append(rSliceVector[a].getB3DPolyPolygon());
}
return aRetval;
}
void extractPlanesFromSlice(
std::vector< basegfx::B3DPolyPolygon >& rFill,
const Slice3DVector& rSliceVector,
bool bCreateNormals,
bool bSmoothNormals,
bool bSmoothLids,
bool bClosed,
double fSmoothNormalsMix,
double fSmoothLidsMix,
bool bCreateTextureCoordinates,
const basegfx::B2DHomMatrix& rTexTransform)
{
const sal_uInt32 nNumSlices(rSliceVector.size());
if(!nNumSlices)
return;
// common parameters
const sal_uInt32 nLoopCount(bClosed ? nNumSlices : nNumSlices - 1);
basegfx::B3DPolyPolygon aEdgeRounding;
sal_uInt32 a;
// texture parameters
double fInvTexHeight(1.0);
std::vector<double> aTexHeightArray;
basegfx::B3DRange aTexRangeFront;
basegfx::B3DRange aTexRangeBack;
if(bCreateTextureCoordinates)
{
aTexRangeFront = basegfx::utils::getRange(rSliceVector[0].getB3DPolyPolygon());
aTexRangeBack = basegfx::utils::getRange(rSliceVector[nNumSlices - 1].getB3DPolyPolygon());
if(aTexRangeBack.getDepth() > aTexRangeBack.getWidth())
{
// last polygon is rotated so that depth is bigger than width, exchange X and Z
// for making applyDefaultTextureCoordinatesParallel use Z instead of X for
// horizontal texture coordinate
aTexRangeBack = basegfx::B3DRange(
aTexRangeBack.getMinZ(), aTexRangeBack.getMinY(), aTexRangeBack.getMinX(),
aTexRangeBack.getMaxZ(), aTexRangeBack.getMaxY(), aTexRangeBack.getMaxX());
}
basegfx::B3DPoint aCenter(basegfx::utils::getRange(rSliceVector[0].getB3DPolyPolygon()).getCenter());
for(a = 0; a < nLoopCount; a++)
{
const basegfx::B3DPoint aNextCenter(basegfx::utils::getRange(rSliceVector[(a + 1) % nNumSlices].getB3DPolyPolygon()).getCenter());
const double fLength(basegfx::B3DVector(aNextCenter - aCenter).getLength());
aTexHeightArray.push_back(fLength);
aCenter = aNextCenter;
}
const double fTexHeight(std::accumulate(aTexHeightArray.begin(), aTexHeightArray.end(), 0.0));
if(!basegfx::fTools::equalZero(fTexHeight))
{
fInvTexHeight = 1.0 / fTexHeight;
}
}
if(nLoopCount)
{
double fTexHeightPos(0.0);
for(a = 0; a < nLoopCount; a++)
{
const Slice3D& rSliceA(rSliceVector[a]);
const Slice3D& rSliceB(rSliceVector[(a + 1) % nNumSlices]);
const bool bAcceptPair(SLICETYPE3D_REGULAR == rSliceA.getSliceType() && SLICETYPE3D_REGULAR == rSliceB.getSliceType());
basegfx::B3DPolyPolygon aPolA(rSliceA.getB3DPolyPolygon());
basegfx::B3DPolyPolygon aPolB(rSliceB.getB3DPolyPolygon());
if(bAcceptPair)
{
if(bCreateNormals)
{
impCreateInBetweenNormals(aPolB, aPolA);
}
{
const sal_uInt32 nIndPrev((a + nNumSlices - 1) % nNumSlices);
const Slice3D& rSlicePrev(rSliceVector[nIndPrev]);
basegfx::B3DPolyPolygon aPrev(rSlicePrev.getB3DPolyPolygon());
basegfx::B3DPolyPolygon aPolAA(rSliceA.getB3DPolyPolygon());
if(SLICETYPE3D_FRONTCAP == rSlicePrev.getSliceType())
{
basegfx::B3DPolyPolygon aFront(rSlicePrev.getB3DPolyPolygon());
const bool bHasSlant(aPolAA != aPrev);
if(bCreateTextureCoordinates)
{
aFront = basegfx::utils::applyDefaultTextureCoordinatesParallel(aFront, aTexRangeFront);
}
if(bCreateNormals)
{
basegfx::B3DVector aNormal(0.0, 0.0, -1.0);
if(aFront.count())
{
aNormal = -aFront.getB3DPolygon(0).getNormal();
}
impSetNormal(aFront, aNormal);
if(bHasSlant)
{
impCreateInBetweenNormals(aPolAA, aPrev);
if(bSmoothNormals)
{
// smooth and copy
impMixNormals(aPolA, aPolAA, fSmoothNormalsMix);
aPolAA = aPolA;
}
else
{
// take over from surface
aPolAA = aPolA;
}
if(bSmoothLids)
{
// smooth and copy
impMixNormals(aFront, aPrev, fSmoothLidsMix);
aPrev = aFront;
}
else
{
// take over from front
aPrev = aFront;
}
}
else
{
if(bSmoothNormals)
{
// smooth
impMixNormals(aPolA, aFront, fSmoothNormalsMix);
}
if(bSmoothLids)
{
// smooth and copy
impMixNormals(aFront, aPolA, fSmoothLidsMix);
aPolA = aFront;
}
}
}
if(bHasSlant)
{
double fTexStart{};
double fTexStop{};
if(bCreateTextureCoordinates)
{
fTexStart = fTexHeightPos * fInvTexHeight;
fTexStop = (fTexHeightPos - aTexHeightArray[(a + nLoopCount - 1) % nLoopCount]) * fInvTexHeight;
}
impAddInBetweenFill(aEdgeRounding, aPolAA, aPrev, fTexStart, fTexStop, bCreateNormals, bCreateTextureCoordinates);
}
aFront.flip();
rFill.push_back(aFront);
}
else
{
if(bCreateNormals && bSmoothNormals && (nIndPrev != a + 1))
{
impCreateInBetweenNormals(aPolAA, aPrev);
impMixNormals(aPolA, aPolAA, 0.5);
}
}
}
{
const sal_uInt32 nIndNext((a + 2) % nNumSlices);
const Slice3D& rSliceNext(rSliceVector[nIndNext]);
basegfx::B3DPolyPolygon aNext(rSliceNext.getB3DPolyPolygon());
basegfx::B3DPolyPolygon aPolBB(rSliceB.getB3DPolyPolygon());
if(SLICETYPE3D_BACKCAP == rSliceNext.getSliceType())
{
basegfx::B3DPolyPolygon aBack(rSliceNext.getB3DPolyPolygon());
const bool bHasSlant(aPolBB != aNext);
if(bCreateTextureCoordinates)
{
aBack = basegfx::utils::applyDefaultTextureCoordinatesParallel(aBack, aTexRangeBack);
}
if(bCreateNormals)
{
const basegfx::B3DVector aNormal(aBack.count() ? aBack.getB3DPolygon(0).getNormal() : basegfx::B3DVector(0.0, 0.0, 1.0));
impSetNormal(aBack, aNormal);
if(bHasSlant)
{
impCreateInBetweenNormals(aNext, aPolBB);
if(bSmoothNormals)
{
// smooth and copy
impMixNormals(aPolB, aPolBB, fSmoothNormalsMix);
aPolBB = aPolB;
}
else
{
// take over from surface
aPolBB = aPolB;
}
if(bSmoothLids)
{
// smooth and copy
impMixNormals(aBack, aNext, fSmoothLidsMix);
aNext = aBack;
}
else
{
// take over from back
aNext = aBack;
}
}
else
{
if(bSmoothNormals)
{
// smooth
impMixNormals(aPolB, aBack, fSmoothNormalsMix);
}
if(bSmoothLids)
{
// smooth and copy
impMixNormals(aBack, aPolB, fSmoothLidsMix);
aPolB = aBack;
}
}
}
if(bHasSlant)
{
double fTexStart{};
double fTexStop{};
if(bCreateTextureCoordinates)
{
fTexStart = (fTexHeightPos + aTexHeightArray[a] + aTexHeightArray[(a + 1) % nLoopCount]) * fInvTexHeight;
fTexStop = (fTexHeightPos + aTexHeightArray[a]) * fInvTexHeight;
}
impAddInBetweenFill(aEdgeRounding, aNext, aPolBB, fTexStart, fTexStop, bCreateNormals, bCreateTextureCoordinates);
}
rFill.push_back(aBack);
}
else
{
if(bCreateNormals && bSmoothNormals && (nIndNext != a))
{
impCreateInBetweenNormals(aNext, aPolBB);
impMixNormals(aPolB, aPolBB, 0.5);
}
}
}
double fTexStart{};
double fTexStop{};
if(bCreateTextureCoordinates)
{
fTexStart = (fTexHeightPos + aTexHeightArray[a]) * fInvTexHeight;
fTexStop = fTexHeightPos * fInvTexHeight;
}
impAddInBetweenFill(aEdgeRounding, aPolB, aPolA, fTexStart, fTexStop, bCreateNormals, bCreateTextureCoordinates);
}
if(bCreateTextureCoordinates)
{
fTexHeightPos += aTexHeightArray[a];
}
}
}
else
{
// no loop, but a single slice (1 == nNumSlices), create a filling from the single
// front plane
const Slice3D& rSlice(rSliceVector[0]);
basegfx::B3DPolyPolygon aFront(rSlice.getB3DPolyPolygon());
if(bCreateTextureCoordinates)
{
aFront = basegfx::utils::applyDefaultTextureCoordinatesParallel(aFront, aTexRangeFront);
}
if(bCreateNormals)
{
basegfx::B3DVector aNormal(0.0, 0.0, -1.0);
if(aFront.count())
{
aNormal = -aFront.getB3DPolygon(0).getNormal();
}
impSetNormal(aFront, aNormal);
}
aFront.flip();
rFill.push_back(aFront);
}
if(bCreateTextureCoordinates)
{
aEdgeRounding.transformTextureCoordinates(rTexTransform);
}
for(a = 0; a < aEdgeRounding.count(); a++)
{
rFill.emplace_back(aEdgeRounding.getB3DPolygon(a));
}
}
void createReducedOutlines(
const geometry::ViewInformation3D& rViewInformation,
const basegfx::B3DHomMatrix& rObjectTransform,
const basegfx::B3DPolygon& rLoopA,
const basegfx::B3DPolygon& rLoopB,
basegfx::B3DPolyPolygon& rTarget)
{
const sal_uInt32 nPointCount(rLoopA.count());
// with identical polygons there are no outlines
if(rLoopA == rLoopB)
return;
if(!(nPointCount && nPointCount == rLoopB.count()))
return;
const basegfx::B3DHomMatrix aObjectTransform(rViewInformation.getObjectToView() * rObjectTransform);
const basegfx::B2DPolygon a2DLoopA(basegfx::utils::createB2DPolygonFromB3DPolygon(rLoopA, aObjectTransform));
const basegfx::B2DPolygon a2DLoopB(basegfx::utils::createB2DPolygonFromB3DPolygon(rLoopB, aObjectTransform));
const basegfx::B2DPoint a2DCenterA(a2DLoopA.getB2DRange().getCenter());
const basegfx::B2DPoint a2DCenterB(a2DLoopB.getB2DRange().getCenter());
// without detectable Y-Axis there are no outlines
if(a2DCenterA.equal(a2DCenterB))
return;
// search for outmost left and right inter-loop-edges which do not cut the loops
const basegfx::B2DPoint aCommonCenter(basegfx::average(a2DCenterA, a2DCenterB));
const basegfx::B2DVector aAxisVector(a2DCenterA - a2DCenterB);
double fMaxLeft(0.0);
double fMaxRight(0.0);
sal_uInt32 nIndexLeft(0);
sal_uInt32 nIndexRight(0);
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const basegfx::B2DPoint aStart(a2DLoopA.getB2DPoint(a));
const basegfx::B2DPoint aEnd(a2DLoopB.getB2DPoint(a));
const basegfx::B2DPoint aMiddle(basegfx::average(aStart, aEnd));
if(!basegfx::utils::isInside(a2DLoopA, aMiddle))
{
if(!basegfx::utils::isInside(a2DLoopB, aMiddle))
{
if(!impHasCutWith(a2DLoopA, aStart, aEnd))
{
if(!impHasCutWith(a2DLoopB, aStart, aEnd))
{
const basegfx::B2DVector aCandidateVector(aMiddle - aCommonCenter);
const double fCross(aCandidateVector.cross(aAxisVector));
const double fDistance(aCandidateVector.getLength());
if(fCross > 0.0)
{
if(fDistance > fMaxLeft)
{
fMaxLeft = fDistance;
nIndexLeft = a;
}
}
else if(fCross < 0.0)
{
if(fDistance > fMaxRight)
{
fMaxRight = fDistance;
nIndexRight = a;
}
}
}
}
}
}
}
if(fMaxLeft != 0.0)
{
basegfx::B3DPolygon aToBeAdded;
aToBeAdded.append(rLoopA.getB3DPoint(nIndexLeft));
aToBeAdded.append(rLoopB.getB3DPoint(nIndexLeft));
rTarget.append(aToBeAdded);
}
if(fMaxRight != 0.0)
{
basegfx::B3DPolygon aToBeAdded;
aToBeAdded.append(rLoopA.getB3DPoint(nIndexRight));
aToBeAdded.append(rLoopB.getB3DPoint(nIndexRight));
rTarget.append(aToBeAdded);
}
}
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'normalize' is required to be utilized.
↑ V530 The return value of function 'normalize' is required to be utilized.
↑ V530 The return value of function 'normalize' is required to be utilized.
↑ V530 The return value of function 'normalize' is required to be utilized.
↑ V530 The return value of function 'normalize' is required to be utilized.
↑ V530 The return value of function 'normalize' is required to be utilized.