/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "textsearch.hxx"
#include "levdis.hxx"
#include <com/sun/star/i18n/BreakIterator.hpp>
#include <com/sun/star/util/SearchAlgorithms2.hpp>
#include <com/sun/star/util/SearchFlags.hpp>
#include <com/sun/star/i18n/WordType.hpp>
#include <com/sun/star/i18n/ScriptType.hpp>
#include <com/sun/star/i18n/CharacterIteratorMode.hpp>
#include <com/sun/star/i18n/CharacterClassification.hpp>
#include <com/sun/star/i18n/KCharacterType.hpp>
#include <com/sun/star/i18n/Transliteration.hpp>
#include <cppuhelper/supportsservice.hxx>
#include <cppuhelper/weak.hxx>
#include <i18nutil/transliteration.hxx>
#include <rtl/ustrbuf.hxx>
#include <sal/log.hxx>
#include <unicode/regex.h>
using namespace ::com::sun::star::util;
using namespace ::com::sun::star::uno;
using namespace ::com::sun::star::lang;
using namespace ::com::sun::star::i18n;
using namespace ::com::sun::star;
const TransliterationFlags COMPLEX_TRANS_MASK =
TransliterationFlags::ignoreBaFa_ja_JP |
TransliterationFlags::ignoreIterationMark_ja_JP |
TransliterationFlags::ignoreTiJi_ja_JP |
TransliterationFlags::ignoreHyuByu_ja_JP |
TransliterationFlags::ignoreSeZe_ja_JP |
TransliterationFlags::ignoreIandEfollowedByYa_ja_JP |
TransliterationFlags::ignoreKiKuFollowedBySa_ja_JP |
TransliterationFlags::ignoreProlongedSoundMark_ja_JP;
namespace
{
TransliterationFlags maskComplexTrans( TransliterationFlags n )
{
// IGNORE_KANA and FULLWIDTH_HALFWIDTH are simple but need to take effect
// in complex transliteration.
return
n & (COMPLEX_TRANS_MASK | // all set ignore bits
TransliterationFlags::IGNORE_KANA | // plus IGNORE_KANA bit
TransliterationFlags::FULLWIDTH_HALFWIDTH); // and the FULLWIDTH_HALFWIDTH value
}
bool isComplexTrans( TransliterationFlags n )
{
return bool(n & COMPLEX_TRANS_MASK);
}
TransliterationFlags maskSimpleTrans( TransliterationFlags n )
{
return n & ~COMPLEX_TRANS_MASK;
}
bool isSimpleTrans( TransliterationFlags n )
{
return bool(maskSimpleTrans(n));
}
// Regex patterns are case sensitive.
TransliterationFlags maskSimpleRegexTrans( TransliterationFlags n )
{
TransliterationFlags m = (n & TransliterationFlags::IGNORE_MASK) & ~TransliterationFlags::IGNORE_CASE;
TransliterationFlags v = n & TransliterationFlags::NON_IGNORE_MASK;
if (v == TransliterationFlags::UPPERCASE_LOWERCASE || v == TransliterationFlags::LOWERCASE_UPPERCASE)
v = TransliterationFlags::NONE;
return (m | v) & ~COMPLEX_TRANS_MASK;
}
bool isSimpleRegexTrans( TransliterationFlags n )
{
return bool(maskSimpleRegexTrans(n));
}
bool isReplacePunctuation( OUString &rStr )
{
return rStr.indexOf(u'\u2018') > -1 ||
rStr.indexOf(u'\u2019') > -1 ||
rStr.indexOf(u'\u201A') > -1 ||
rStr.indexOf(u'\u201B') > -1 ||
rStr.indexOf(u'\u201C') > -1 ||
rStr.indexOf(u'\u201D') > -1 ||
rStr.indexOf(u'\u201E') > -1 ||
rStr.indexOf(u'\u201F') > -1;
}
OUString replacePunctuation( OUString &rStr )
{
return rStr.replace(u'\u2018', '\'')
.replace(u'\u2019', '\'')
.replace(u'\u201A', '\'')
.replace(u'\u201B', '\'')
.replace(u'\u201C', '"')
.replace(u'\u201D', '"')
.replace(u'\u201E', '"')
.replace(u'\u201F', '"');
}
};
TextSearch::TextSearch(const Reference < XComponentContext > & rxContext)
: m_xContext( rxContext )
{
SearchOptions2 aOpt;
aOpt.AlgorithmType2 = SearchAlgorithms2::ABSOLUTE;
aOpt.algorithmType = SearchAlgorithms_ABSOLUTE;
aOpt.searchFlag = SearchFlags::ALL_IGNORE_CASE;
//aOpt.Locale = ???;
setOptions( aOpt );
}
TextSearch::~TextSearch()
{
pRegexMatcher.reset();
pWLD.reset();
pJumpTable.reset();
pJumpTable2.reset();
}
void TextSearch::setOptions2( const SearchOptions2& rOptions )
{
std::unique_lock g(m_aMutex);
aSrchPara = rOptions;
pRegexMatcher.reset();
pWLD.reset();
pJumpTable.reset();
pJumpTable2.reset();
maWildcardReversePattern.clear();
maWildcardReversePattern2.clear();
TransliterationFlags transliterateFlags = static_cast<TransliterationFlags>(aSrchPara.transliterateFlags);
bSearchApostrophe = false;
bool bReplaceApostrophe = false;
if (aSrchPara.AlgorithmType2 == SearchAlgorithms2::REGEXP)
{
// RESrchPrepare will consider aSrchPara.transliterateFlags when
// picking the actual regex pattern
// (sSrchStr|sSrchStr2|SearchOptions2::searchString) and setting
// case-insensitivity. Create transliteration instance, if any, without
// ignore-case so later in TextSearch::searchForward() the string to
// match is not case-altered, leave case-(in)sensitive to regex engine.
transliterateFlags &= ~TransliterationFlags::IGNORE_CASE;
}
else if ( aSrchPara.searchString.indexOf('\'') > - 1 || aSrchPara.searchString.indexOf('"') > - 1 )
{
bSearchApostrophe = true;
bReplaceApostrophe = isReplacePunctuation(aSrchPara.searchString);
}
// Create Transliteration class
if( isSimpleTrans( transliterateFlags) )
{
if( !xTranslit.is() )
xTranslit.set( Transliteration::create( m_xContext ) );
xTranslit->loadModule(
static_cast<TransliterationModules>(maskSimpleTrans(transliterateFlags)),
aSrchPara.Locale);
}
else if( xTranslit.is() )
xTranslit = nullptr;
// Create Transliteration for 2<->1, 2<->2 transliteration
if ( isComplexTrans( transliterateFlags) )
{
if( !xTranslit2.is() )
xTranslit2.set( Transliteration::create( m_xContext ) );
// Load transliteration module
xTranslit2->loadModule(
static_cast<TransliterationModules>(maskComplexTrans(transliterateFlags)),
aSrchPara.Locale);
}
if ( !xBreak.is() )
xBreak = css::i18n::BreakIterator::create( m_xContext );
sSrchStr = aSrchPara.searchString;
// Transliterate search string.
if (aSrchPara.AlgorithmType2 == SearchAlgorithms2::REGEXP)
{
if (isSimpleRegexTrans(transliterateFlags))
{
if (maskSimpleRegexTrans(transliterateFlags) !=
maskSimpleTrans(transliterateFlags))
{
css::uno::Reference< XExtendedTransliteration > xTranslitPattern(
Transliteration::create( m_xContext ));
if (xTranslitPattern.is())
{
xTranslitPattern->loadModule(
static_cast<TransliterationModules>(maskSimpleRegexTrans(transliterateFlags)),
aSrchPara.Locale);
sSrchStr = xTranslitPattern->transliterateString2String(
aSrchPara.searchString, 0, aSrchPara.searchString.getLength());
}
}
else
{
if (xTranslit.is())
sSrchStr = xTranslit->transliterateString2String(
aSrchPara.searchString, 0, aSrchPara.searchString.getLength());
}
// xTranslit2 complex transliterated sSrchStr2 is not used in
// regex, see TextSearch::searchForward() and
// TextSearch::searchBackward()
}
}
else
{
if ( xTranslit.is() && isSimpleTrans(transliterateFlags) )
sSrchStr = xTranslit->transliterateString2String(
aSrchPara.searchString, 0, aSrchPara.searchString.getLength());
if ( xTranslit2.is() && isComplexTrans(transliterateFlags) )
sSrchStr2 = xTranslit2->transliterateString2String(
aSrchPara.searchString, 0, aSrchPara.searchString.getLength());
}
if ( bReplaceApostrophe )
sSrchStr = replacePunctuation(sSrchStr);
// Take the new SearchOptions2::AlgorithmType2 field and ignore
// SearchOptions::algorithmType
switch( aSrchPara.AlgorithmType2)
{
case SearchAlgorithms2::REGEXP:
fnForward = &TextSearch::RESrchFrwrd;
fnBackward = &TextSearch::RESrchBkwrd;
RESrchPrepare( aSrchPara);
break;
case SearchAlgorithms2::APPROXIMATE:
fnForward = &TextSearch::ApproxSrchFrwrd;
fnBackward = &TextSearch::ApproxSrchBkwrd;
pWLD.reset( new WLevDistance( sSrchStr.getStr(), aSrchPara.changedChars,
aSrchPara.insertedChars, aSrchPara.deletedChars,
0 != (SearchFlags::LEV_RELAXED & aSrchPara.searchFlag ) ) );
nLimit = pWLD->GetLimit();
break;
case SearchAlgorithms2::WILDCARD:
mcWildcardEscapeChar = static_cast<sal_uInt32>(aSrchPara.WildcardEscapeCharacter);
mbWildcardAllowSubstring = ((aSrchPara.searchFlag & SearchFlags::WILD_MATCH_SELECTION) == 0);
fnForward = &TextSearch::WildcardSrchFrwrd;
fnBackward = &TextSearch::WildcardSrchBkwrd;
break;
default:
SAL_WARN("i18npool","TextSearch::setOptions2 - default what?");
[[fallthrough]];
case SearchAlgorithms2::ABSOLUTE:
fnForward = &TextSearch::NSrchFrwrd;
fnBackward = &TextSearch::NSrchBkwrd;
break;
}
}
void TextSearch::setOptions( const SearchOptions& rOptions )
{
sal_Int16 nAlgorithmType2;
switch (rOptions.algorithmType)
{
case SearchAlgorithms_REGEXP:
nAlgorithmType2 = SearchAlgorithms2::REGEXP;
break;
case SearchAlgorithms_APPROXIMATE:
nAlgorithmType2 = SearchAlgorithms2::APPROXIMATE;
break;
default:
SAL_WARN("i18npool","TextSearch::setOptions - default what?");
[[fallthrough]];
case SearchAlgorithms_ABSOLUTE:
nAlgorithmType2 = SearchAlgorithms2::ABSOLUTE;
break;
}
// It would be nice if an inherited struct had a ctor that takes an
// instance of the object the struct derived from...
SearchOptions2 aOptions2(
rOptions.algorithmType,
rOptions.searchFlag,
rOptions.searchString,
rOptions.replaceString,
rOptions.Locale,
rOptions.changedChars,
rOptions.deletedChars,
rOptions.insertedChars,
rOptions.transliterateFlags,
nAlgorithmType2,
0 // no wildcard search, no escape character...
);
setOptions2( aOptions2);
}
static sal_Int32 FindPosInSeq_Impl( const Sequence <sal_Int32>& rOff, sal_Int32 nPos )
{
auto pOff = std::find_if(rOff.begin(), rOff.end(),
[nPos](const sal_Int32 nOff) { return nOff >= nPos; });
return static_cast<sal_Int32>(std::distance(rOff.begin(), pOff));
}
SearchResult TextSearch::searchForward( const OUString& searchStr, sal_Int32 startPos, sal_Int32 endPos )
{
std::unique_lock g(m_aMutex);
SearchResult sres;
OUString in_str(searchStr);
// in non-regex mode, allow searching typographical apostrophe with the ASCII one
// to avoid regression after using automatic conversion to U+2019 during typing in Writer
bool bReplaceApostrophe = bSearchApostrophe && isReplacePunctuation(in_str);
bUsePrimarySrchStr = true;
if ( xTranslit.is() )
{
// apply normal transliteration (1<->1, 1<->0)
sal_Int32 nInStartPos = startPos;
if (pRegexMatcher && startPos > 0)
{
// tdf#89665, tdf#75806: An optimization to avoid transliterating the whole string, yet
// transliterate enough of the leading text to allow sensible look-behind assertions.
// 100 is chosen arbitrarily in the hope that look-behind assertions would largely fit.
// See http://userguide.icu-project.org/strings/regexp for look-behind assertion syntax.
// When search regex doesn't start with an assertion, 3 is to allow startPos to be in
// the middle of a surrogate pair, preceded by another surrogate pair.
const sal_Int32 nMaxLeadingLen = aSrchPara.searchString.startsWith("(?") ? 100 : 3;
nInStartPos -= std::min(nMaxLeadingLen, startPos);
}
sal_Int32 nInEndPos = endPos;
if (pRegexMatcher && endPos < searchStr.getLength())
{
// tdf#65038: ditto for look-ahead assertions
const sal_Int32 nMaxTrailingLen = aSrchPara.searchString.endsWith(")") ? 100 : 3;
nInEndPos += std::min(nMaxTrailingLen, searchStr.getLength() - endPos);
}
css::uno::Sequence<sal_Int32> offset(nInEndPos - nInStartPos);
in_str = xTranslit->transliterate(searchStr, nInStartPos, nInEndPos - nInStartPos, offset);
if ( bReplaceApostrophe )
in_str = replacePunctuation(in_str);
// JP 20.6.2001: also the start and end positions must be corrected!
sal_Int32 newStartPos =
(startPos == 0) ? 0 : FindPosInSeq_Impl( offset, startPos );
sal_Int32 newEndPos = (endPos < searchStr.getLength())
? FindPosInSeq_Impl( offset, endPos )
: in_str.getLength();
sres = (this->*fnForward)( g, in_str, newStartPos, newEndPos );
// Map offsets back to untransliterated string.
const sal_Int32 nOffsets = offset.getLength();
if (nOffsets)
{
auto sres_startOffsetRange = asNonConstRange(sres.startOffset);
auto sres_endOffsetRange = asNonConstRange(sres.endOffset);
// For regex nGroups is the number of groups+1 with group 0 being
// the entire match.
const sal_Int32 nGroups = sres.startOffset.getLength();
for ( sal_Int32 k = 0; k < nGroups; k++ )
{
const sal_Int32 nStart = sres.startOffset[k];
// Result offsets are negative (-1) if a group expression was
// not matched.
if (nStart >= 0)
sres_startOffsetRange[k] = (nStart < nOffsets ? offset[nStart] : (offset[nOffsets - 1] + 1));
// JP 20.6.2001: end is ever exclusive and then don't return
// the position of the next character - return the
// next position behind the last found character!
// "a b c" find "b" must return 2,3 and not 2,4!!!
const sal_Int32 nStop = sres.endOffset[k];
if (nStop >= 0)
{
if (nStop > 0)
sres_endOffsetRange[k] = offset[(nStop <= nOffsets ? nStop : nOffsets) - 1] + 1;
else
sres_endOffsetRange[k] = offset[0];
}
}
}
}
else
{
if ( bReplaceApostrophe )
in_str = in_str.replace(u'\u2019', '\'');
sres = (this->*fnForward)( g, in_str, startPos, endPos );
}
if ( xTranslit2.is() && aSrchPara.AlgorithmType2 != SearchAlgorithms2::REGEXP)
{
SearchResult sres2;
in_str = searchStr;
css::uno::Sequence <sal_Int32> offset( in_str.getLength());
in_str = xTranslit2->transliterate( searchStr, 0, in_str.getLength(), offset );
if( startPos )
startPos = FindPosInSeq_Impl( offset, startPos );
if( endPos < searchStr.getLength() )
endPos = FindPosInSeq_Impl( offset, endPos );
else
endPos = in_str.getLength();
bUsePrimarySrchStr = false;
sres2 = (this->*fnForward)( g, in_str, startPos, endPos );
auto sres2_startOffsetRange = asNonConstRange(sres2.startOffset);
auto sres2_endOffsetRange = asNonConstRange(sres2.endOffset);
for ( int k = 0; k < sres2.startOffset.getLength(); k++ )
{
if (sres2.startOffset[k])
sres2_startOffsetRange[k] = offset[sres2.startOffset[k]-1] + 1;
if (sres2.endOffset[k])
sres2_endOffsetRange[k] = offset[sres2.endOffset[k]-1] + 1;
}
// pick first and long one
if ( sres.subRegExpressions == 0)
return sres2;
if ( sres2.subRegExpressions == 1)
{
if ( sres.startOffset[0] > sres2.startOffset[0])
return sres2;
else if ( sres.startOffset[0] == sres2.startOffset[0] &&
sres.endOffset[0] < sres2.endOffset[0])
return sres2;
}
}
return sres;
}
SearchResult TextSearch::searchBackward( const OUString& searchStr, sal_Int32 startPos, sal_Int32 endPos )
{
std::unique_lock g(m_aMutex);
SearchResult sres;
OUString in_str(searchStr);
// in non-regex mode, allow searching typographical apostrophe with the ASCII one
// to avoid regression after using automatic conversion to U+2019 during typing in Writer
bool bReplaceApostrophe = bSearchApostrophe && isReplacePunctuation(in_str);
bUsePrimarySrchStr = true;
if ( xTranslit.is() )
{
// apply only simple 1<->1 transliteration here
css::uno::Sequence<sal_Int32> offset(startPos - endPos);
in_str = xTranslit->transliterate( searchStr, endPos, startPos - endPos, offset );
if ( bReplaceApostrophe )
in_str = replacePunctuation(in_str);
// JP 20.6.2001: also the start and end positions must be corrected!
sal_Int32 const newStartPos = (startPos < searchStr.getLength())
? FindPosInSeq_Impl( offset, startPos )
: in_str.getLength();
sal_Int32 const newEndPos =
(endPos == 0) ? 0 : FindPosInSeq_Impl( offset, endPos );
// TODO: this would need nExtraOffset handling to avoid $ matching
// if (pRegexMatcher && startPos < searchStr.getLength())
// but that appears to be impossible with ICU regex
sres = (this->*fnBackward)( g, in_str, newStartPos, newEndPos );
// Map offsets back to untransliterated string.
const sal_Int32 nOffsets = offset.getLength();
if (nOffsets)
{
auto sres_startOffsetRange = asNonConstRange(sres.startOffset);
auto sres_endOffsetRange = asNonConstRange(sres.endOffset);
// For regex nGroups is the number of groups+1 with group 0 being
// the entire match.
const sal_Int32 nGroups = sres.startOffset.getLength();
for ( sal_Int32 k = 0; k < nGroups; k++ )
{
const sal_Int32 nStart = sres.startOffset[k];
// Result offsets are negative (-1) if a group expression was
// not matched.
if (nStart >= 0)
{
if (nStart > 0)
sres_startOffsetRange[k] = offset[(nStart <= nOffsets ? nStart : nOffsets) - 1] + 1;
else
sres_startOffsetRange[k] = offset[0];
}
// JP 20.6.2001: end is ever exclusive and then don't return
// the position of the next character - return the
// next position behind the last found character!
// "a b c" find "b" must return 2,3 and not 2,4!!!
const sal_Int32 nStop = sres.endOffset[k];
if (nStop >= 0)
sres_endOffsetRange[k] = (nStop < nOffsets ? offset[nStop] : (offset[nOffsets - 1] + 1));
}
}
}
else
{
if ( bReplaceApostrophe )
in_str = replacePunctuation(in_str);
sres = (this->*fnBackward)( g, in_str, startPos, endPos );
}
if ( xTranslit2.is() && aSrchPara.AlgorithmType2 != SearchAlgorithms2::REGEXP )
{
SearchResult sres2;
in_str = searchStr;
css::uno::Sequence <sal_Int32> offset( in_str.getLength());
in_str = xTranslit2->transliterate(searchStr, 0, in_str.getLength(), offset);
if( startPos < searchStr.getLength() )
startPos = FindPosInSeq_Impl( offset, startPos );
else
startPos = in_str.getLength();
if( endPos )
endPos = FindPosInSeq_Impl( offset, endPos );
bUsePrimarySrchStr = false;
sres2 = (this->*fnBackward)( g, in_str, startPos, endPos );
auto sres2_startOffsetRange = asNonConstRange(sres2.startOffset);
auto sres2_endOffsetRange = asNonConstRange(sres2.endOffset);
for( int k = 0; k < sres2.startOffset.getLength(); k++ )
{
if (sres2.startOffset[k])
sres2_startOffsetRange[k] = offset[sres2.startOffset[k]-1]+1;
if (sres2.endOffset[k])
sres2_endOffsetRange[k] = offset[sres2.endOffset[k]-1]+1;
}
// pick last and long one
if ( sres.subRegExpressions == 0 )
return sres2;
if ( sres2.subRegExpressions == 1 )
{
if ( sres.startOffset[0] < sres2.startOffset[0] )
return sres2;
if ( sres.startOffset[0] == sres2.startOffset[0] &&
sres.endOffset[0] > sres2.endOffset[0] )
return sres2;
}
}
return sres;
}
bool TextSearch::IsDelimiter( const OUString& rStr, sal_Int32 nPos ) const
{
bool bRet = true;
if( '\x7f' != rStr[nPos])
{
if ( !xCharClass.is() )
xCharClass = CharacterClassification::create( m_xContext );
sal_Int32 nCType = xCharClass->getCharacterType( rStr, nPos,
aSrchPara.Locale );
if( 0 != (( KCharacterType::DIGIT | KCharacterType::ALPHA |
KCharacterType::LETTER ) & nCType ) )
bRet = false;
}
return bRet;
}
// --------- helper methods for Boyer-Moore like text searching ----------
// TODO: use ICU's regex UREGEX_LITERAL mode instead when it becomes available
void TextSearch::MakeForwardTab()
{
// create the jumptable for the search text
if( pJumpTable && bIsForwardTab )
{
return; // the jumpTable is ok
}
bIsForwardTab = true;
sal_Int32 n, nLen = sSrchStr.getLength();
pJumpTable.reset( new TextSearchJumpTable );
for( n = 0; n < nLen - 1; ++n )
{
sal_Unicode cCh = sSrchStr[n];
sal_Int32 nDiff = nLen - n - 1;
TextSearchJumpTable::value_type aEntry( cCh, nDiff );
::std::pair< TextSearchJumpTable::iterator, bool > aPair =
pJumpTable->insert( aEntry );
if ( !aPair.second )
(*(aPair.first)).second = nDiff;
}
}
void TextSearch::MakeForwardTab2()
{
// create the jumptable for the search text
if( pJumpTable2 && bIsForwardTab )
{
return; // the jumpTable is ok
}
bIsForwardTab = true;
sal_Int32 n, nLen = sSrchStr2.getLength();
pJumpTable2.reset( new TextSearchJumpTable );
for( n = 0; n < nLen - 1; ++n )
{
sal_Unicode cCh = sSrchStr2[n];
sal_Int32 nDiff = nLen - n - 1;
TextSearchJumpTable::value_type aEntry( cCh, nDiff );
::std::pair< TextSearchJumpTable::iterator, bool > aPair =
pJumpTable2->insert( aEntry );
if ( !aPair.second )
(*(aPair.first)).second = nDiff;
}
}
void TextSearch::MakeBackwardTab()
{
// create the jumptable for the search text
if( pJumpTable && !bIsForwardTab)
{
return; // the jumpTable is ok
}
bIsForwardTab = false;
sal_Int32 n, nLen = sSrchStr.getLength();
pJumpTable.reset( new TextSearchJumpTable );
for( n = nLen-1; n > 0; --n )
{
sal_Unicode cCh = sSrchStr[n];
TextSearchJumpTable::value_type aEntry( cCh, n );
::std::pair< TextSearchJumpTable::iterator, bool > aPair =
pJumpTable->insert( aEntry );
if ( !aPair.second )
(*(aPair.first)).second = n;
}
}
void TextSearch::MakeBackwardTab2()
{
// create the jumptable for the search text
if( pJumpTable2 && !bIsForwardTab )
{
return; // the jumpTable is ok
}
bIsForwardTab = false;
sal_Int32 n, nLen = sSrchStr2.getLength();
pJumpTable2.reset( new TextSearchJumpTable );
for( n = nLen-1; n > 0; --n )
{
sal_Unicode cCh = sSrchStr2[n];
TextSearchJumpTable::value_type aEntry( cCh, n );
::std::pair< TextSearchJumpTable::iterator, bool > aPair =
pJumpTable2->insert( aEntry );
if ( !aPair.second )
(*(aPair.first)).second = n;
}
}
sal_Int32 TextSearch::GetDiff( const sal_Unicode cChr ) const
{
TextSearchJumpTable *pJump;
OUString sSearchKey;
if ( bUsePrimarySrchStr ) {
pJump = pJumpTable.get();
sSearchKey = sSrchStr;
} else {
pJump = pJumpTable2.get();
sSearchKey = sSrchStr2;
}
TextSearchJumpTable::const_iterator iLook = pJump->find( cChr );
if ( iLook == pJump->end() )
return sSearchKey.getLength();
return (*iLook).second;
}
SearchResult TextSearch::NSrchFrwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr, sal_Int32 startPos, sal_Int32 endPos )
{
SearchResult aRet;
aRet.subRegExpressions = 0;
OUString sSearchKey = bUsePrimarySrchStr ? sSrchStr : sSrchStr2;
sal_Int32 nSuchIdx = searchStr.getLength();
sal_Int32 nEnd = endPos;
if( !nSuchIdx || !sSearchKey.getLength() || sSearchKey.getLength() > nSuchIdx )
return aRet;
if( nEnd < sSearchKey.getLength() ) // position inside the search region ?
return aRet;
nEnd -= sSearchKey.getLength();
if (bUsePrimarySrchStr)
MakeForwardTab(); // create the jumptable
else
MakeForwardTab2();
for (sal_Int32 nCmpIdx = startPos; // start position for the search
nCmpIdx <= nEnd;
nCmpIdx += GetDiff( searchStr[nCmpIdx + sSearchKey.getLength()-1]))
{
nSuchIdx = sSearchKey.getLength() - 1;
while( nSuchIdx >= 0 && sSearchKey[nSuchIdx] == searchStr[nCmpIdx + nSuchIdx])
{
if( nSuchIdx == 0 )
{
if( SearchFlags::NORM_WORD_ONLY & aSrchPara.searchFlag )
{
sal_Int32 nFndEnd = nCmpIdx + sSearchKey.getLength();
bool bAtStart = !nCmpIdx;
bool bAtEnd = nFndEnd == endPos;
bool bDelimBefore = bAtStart || IsDelimiter( searchStr, nCmpIdx-1 );
bool bDelimBehind = bAtEnd || IsDelimiter( searchStr, nFndEnd );
// * 1 -> only one word in the paragraph
// * 2 -> at begin of paragraph
// * 3 -> at end of paragraph
// * 4 -> inside the paragraph
if( !( ( bAtStart && bAtEnd ) || // 1
( bAtStart && bDelimBehind ) || // 2
( bAtEnd && bDelimBefore ) || // 3
( bDelimBefore && bDelimBehind ))) // 4
break;
}
aRet.subRegExpressions = 1;
aRet.startOffset = { nCmpIdx };
aRet.endOffset = { nCmpIdx + sSearchKey.getLength() };
return aRet;
}
else
nSuchIdx--;
}
}
return aRet;
}
SearchResult TextSearch::NSrchBkwrd( std::unique_lock<std::mutex>& /*rGuard*/,const OUString& searchStr, sal_Int32 startPos, sal_Int32 endPos )
{
SearchResult aRet;
aRet.subRegExpressions = 0;
OUString sSearchKey = bUsePrimarySrchStr ? sSrchStr : sSrchStr2;
sal_Int32 nSuchIdx = searchStr.getLength();
sal_Int32 nEnd = endPos;
if( nSuchIdx == 0 || sSearchKey.isEmpty() || sSearchKey.getLength() > nSuchIdx)
return aRet;
if (bUsePrimarySrchStr)
MakeBackwardTab(); // create the jumptable
else
MakeBackwardTab2();
if( nEnd == nSuchIdx ) // end position for the search
nEnd = sSearchKey.getLength();
else
nEnd += sSearchKey.getLength();
sal_Int32 nCmpIdx = startPos; // start position for the search
while (nCmpIdx >= nEnd)
{
nSuchIdx = 0;
while( nSuchIdx < sSearchKey.getLength() && sSearchKey[nSuchIdx] ==
searchStr[nCmpIdx + nSuchIdx - sSearchKey.getLength()] )
nSuchIdx++;
if( nSuchIdx >= sSearchKey.getLength() )
{
if( SearchFlags::NORM_WORD_ONLY & aSrchPara.searchFlag )
{
sal_Int32 nFndStt = nCmpIdx - sSearchKey.getLength();
bool bAtStart = !nFndStt;
bool bAtEnd = nCmpIdx == startPos;
bool bDelimBehind = bAtEnd || IsDelimiter( searchStr, nCmpIdx );
bool bDelimBefore = bAtStart || // begin of paragraph
IsDelimiter( searchStr, nFndStt-1 );
// * 1 -> only one word in the paragraph
// * 2 -> at begin of paragraph
// * 3 -> at end of paragraph
// * 4 -> inside the paragraph
if( ( bAtStart && bAtEnd ) || // 1
( bAtStart && bDelimBehind ) || // 2
( bAtEnd && bDelimBefore ) || // 3
( bDelimBefore && bDelimBehind )) // 4
{
aRet.subRegExpressions = 1;
aRet.startOffset = { nCmpIdx };
aRet.endOffset = { nCmpIdx - sSearchKey.getLength() };
return aRet;
}
}
else
{
aRet.subRegExpressions = 1;
aRet.startOffset = { nCmpIdx };
aRet.endOffset = { nCmpIdx - sSearchKey.getLength() };
return aRet;
}
}
nSuchIdx = GetDiff( searchStr[nCmpIdx - sSearchKey.getLength()] );
if( nCmpIdx < nSuchIdx )
return aRet;
nCmpIdx -= nSuchIdx;
}
return aRet;
}
void TextSearch::RESrchPrepare( const css::util::SearchOptions2& rOptions)
{
TransliterationFlags transliterateFlags = static_cast<TransliterationFlags>(rOptions.transliterateFlags);
// select the transliterated pattern string
const OUString& rPatternStr =
(isSimpleTrans(transliterateFlags) ? sSrchStr
: (isComplexTrans(transliterateFlags) ? sSrchStr2 : rOptions.searchString));
sal_uInt32 nIcuSearchFlags = UREGEX_UWORD; // request UAX#29 unicode capability
// map css::util::SearchFlags to ICU uregex.h flags
// TODO: REG_EXTENDED, REG_NOT_BEGINOFLINE, REG_NOT_ENDOFLINE
// REG_NEWLINE is neither properly defined nor used anywhere => not implemented
// REG_NOSUB is not used anywhere => not implemented
// NORM_WORD_ONLY is only used for SearchAlgorithm==Absolute
// LEV_RELAXED is only used for SearchAlgorithm==Approximate
// Note that the search flag ALL_IGNORE_CASE is deprecated in UNO
// probably because the transliteration flag IGNORE_CASE handles it as well.
if( (rOptions.searchFlag & css::util::SearchFlags::ALL_IGNORE_CASE) != 0
|| (transliterateFlags & TransliterationFlags::IGNORE_CASE))
nIcuSearchFlags |= UREGEX_CASE_INSENSITIVE;
UErrorCode nIcuErr = U_ZERO_ERROR;
// assumption: transliteration didn't mangle regexp control chars
icu::UnicodeString aIcuSearchPatStr( reinterpret_cast<const UChar*>(rPatternStr.getStr()), rPatternStr.getLength());
#ifndef DISABLE_WORDBOUND_EMULATION
// for convenience specific syntax elements of the old regex engine are emulated
// - by replacing \< with "word-break followed by a look-ahead word-char"
static const icu::UnicodeString aChevronPatternB( "\\\\<", -1, icu::UnicodeString::kInvariant);
static const icu::UnicodeString aChevronReplaceB( "\\\\b(?=\\\\w)", -1, icu::UnicodeString::kInvariant);
static icu::RegexMatcher aChevronMatcherB( aChevronPatternB, 0, nIcuErr);
aChevronMatcherB.reset( aIcuSearchPatStr);
aIcuSearchPatStr = aChevronMatcherB.replaceAll( aChevronReplaceB, nIcuErr);
aChevronMatcherB.reset();
// - by replacing \> with "look-behind word-char followed by a word-break"
static const icu::UnicodeString aChevronPatternE( "\\\\>", -1, icu::UnicodeString::kInvariant);
static const icu::UnicodeString aChevronReplaceE( "(?<=\\\\w)\\\\b", -1, icu::UnicodeString::kInvariant);
static icu::RegexMatcher aChevronMatcherE( aChevronPatternE, 0, nIcuErr);
aChevronMatcherE.reset( aIcuSearchPatStr);
aIcuSearchPatStr = aChevronMatcherE.replaceAll( aChevronReplaceE, nIcuErr);
aChevronMatcherE.reset();
#endif
pRegexMatcher.reset( new icu::RegexMatcher( aIcuSearchPatStr, nIcuSearchFlags, nIcuErr) );
if (nIcuErr)
{
SAL_INFO( "i18npool", "TextSearch::RESrchPrepare UErrorCode " << nIcuErr);
pRegexMatcher.reset();
}
else
{
// Pathological patterns may result in exponential run time making the
// application appear to be frozen. Limit that. Documentation for this
// call says
// https://unicode-org.github.io/icu-docs/apidoc/released/icu4c/classicu_1_1RegexMatcher.html#a6ebcfcab4fe6a38678c0291643a03a00
// "The units of the limit are steps of the match engine.
// Correspondence with actual processor time will depend on the speed
// of the processor and the details of the specific pattern, but will
// typically be on the order of milliseconds."
// Just what is a good value? 42 is always an answer ... the 23 enigma
// as well... which on the dev's machine is roughly 50 seconds with the
// pattern of fdo#70627.
/* TODO: make this a configuration settable value and possibly take
* complexity of expression into account and maybe even length of text
* to be matched; currently (2013-11-25) that is at most one 64k
* paragraph per RESrchFrwrd()/RESrchBkwrd() call. */
pRegexMatcher->setTimeLimit( 23*1000, nIcuErr);
}
}
static bool lcl_findRegex(std::unique_ptr<icu::RegexMatcher> const& pRegexMatcher,
sal_Int32 nStartPos, sal_Int32 nEndPos, UErrorCode& rIcuErr)
{
pRegexMatcher->region(nStartPos, nEndPos, rIcuErr);
pRegexMatcher->useAnchoringBounds(false); // use whole text's anchoring bounds, not region's
pRegexMatcher->useTransparentBounds(true); // take text outside of the region into account for
// look-ahead/behind assertions
if (!pRegexMatcher->find(rIcuErr))
{
/* TODO: future versions could pass the UErrorCode or translations
* thereof to the caller, for example to inform the user of
* U_REGEX_TIME_OUT. The strange thing though is that an error is set
* only after the second call that returns immediately and not if
* timeout occurred on the first call?!? */
SAL_INFO( "i18npool", "lcl_findRegex UErrorCode " << rIcuErr);
return false;
}
return true;
}
SearchResult TextSearch::RESrchFrwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr,
sal_Int32 startPos, sal_Int32 endPos )
{
SearchResult aRet;
aRet.subRegExpressions = 0;
if( !pRegexMatcher)
return aRet;
if( endPos > searchStr.getLength())
endPos = searchStr.getLength();
// use the ICU RegexMatcher to find the matches
UErrorCode nIcuErr = U_ZERO_ERROR;
const icu::UnicodeString aSearchTargetStr(false, reinterpret_cast<const UChar*>(searchStr.getStr()),
searchStr.getLength());
pRegexMatcher->reset( aSearchTargetStr);
// search until there is a valid match
for(;;)
{
if (!lcl_findRegex( pRegexMatcher, startPos, endPos, nIcuErr))
return aRet;
// #i118887# ignore zero-length matches e.g. "a*" in "bc"
int nStartOfs = pRegexMatcher->start( nIcuErr);
int nEndOfs = pRegexMatcher->end( nIcuErr);
if( nStartOfs < nEndOfs)
break;
// If the zero-length match is behind the string, do not match it again
// and again until startPos reaches there. A match behind the string is
// a "$" anchor.
if (nStartOfs == endPos)
break;
// try at next position if there was a zero-length match
if( ++startPos >= endPos)
return aRet;
}
// extract the result of the search
const int nGroupCount = pRegexMatcher->groupCount();
aRet.subRegExpressions = nGroupCount + 1;
aRet.startOffset.realloc( aRet.subRegExpressions);
auto pstartOffset = aRet.startOffset.getArray();
aRet.endOffset.realloc( aRet.subRegExpressions);
auto pendOffset = aRet.endOffset.getArray();
pstartOffset[0] = pRegexMatcher->start( nIcuErr);
pendOffset[0] = pRegexMatcher->end( nIcuErr);
for( int i = 1; i <= nGroupCount; ++i) {
pstartOffset[i] = pRegexMatcher->start( i, nIcuErr);
pendOffset[i] = pRegexMatcher->end( i, nIcuErr);
}
return aRet;
}
SearchResult TextSearch::RESrchBkwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr,
sal_Int32 startPos, sal_Int32 endPos )
{
// NOTE: for backwards search callers provide startPos/endPos inverted!
SearchResult aRet;
aRet.subRegExpressions = 0;
if( !pRegexMatcher)
return aRet;
if( startPos > searchStr.getLength())
startPos = searchStr.getLength();
// use the ICU RegexMatcher to find the matches
// TODO: use ICU's backward searching once it becomes available
// as its replacement using forward search is not as good as the real thing
UErrorCode nIcuErr = U_ZERO_ERROR;
const icu::UnicodeString aSearchTargetStr(false, reinterpret_cast<const UChar*>(searchStr.getStr()),
searchStr.getLength());
pRegexMatcher->reset( aSearchTargetStr);
if (!lcl_findRegex( pRegexMatcher, endPos, startPos, nIcuErr))
return aRet;
// find the last match
int nLastPos = 0;
int nFoundEnd = 0;
int nGoodPos = 0, nGoodEnd = 0;
bool bFirst = true;
do {
nLastPos = pRegexMatcher->start( nIcuErr);
nFoundEnd = pRegexMatcher->end( nIcuErr);
if (nLastPos < nFoundEnd)
{
// remember last non-zero-length match
nGoodPos = nLastPos;
nGoodEnd = nFoundEnd;
}
if( nFoundEnd >= startPos)
break;
bFirst = false;
if( nFoundEnd == nLastPos)
++nFoundEnd;
} while( lcl_findRegex( pRegexMatcher, nFoundEnd, startPos, nIcuErr));
// Ignore all zero-length matches except "$" anchor on first match.
if (nGoodPos == nGoodEnd)
{
if (bFirst && nLastPos == startPos)
nGoodPos = nLastPos;
else
return aRet;
}
// find last match again to get its details
lcl_findRegex( pRegexMatcher, nGoodPos, startPos, nIcuErr);
// fill in the details of the last match
const int nGroupCount = pRegexMatcher->groupCount();
aRet.subRegExpressions = nGroupCount + 1;
aRet.startOffset.realloc( aRet.subRegExpressions);
auto pstartOffset = aRet.startOffset.getArray();
aRet.endOffset.realloc( aRet.subRegExpressions);
auto pendOffset = aRet.endOffset.getArray();
// NOTE: existing users of backward search seem to expect startOfs/endOfs being inverted!
pstartOffset[0] = pRegexMatcher->end( nIcuErr);
pendOffset[0] = pRegexMatcher->start( nIcuErr);
for( int i = 1; i <= nGroupCount; ++i) {
pstartOffset[i] = pRegexMatcher->end( i, nIcuErr);
pendOffset[i] = pRegexMatcher->start( i, nIcuErr);
}
return aRet;
}
// search for words phonetically
SearchResult TextSearch::ApproxSrchFrwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr,
sal_Int32 startPos, sal_Int32 endPos )
{
SearchResult aRet;
aRet.subRegExpressions = 0;
if( !xBreak.is() )
return aRet;
sal_Int32 nStt, nEnd;
Boundary aWBnd = xBreak->getWordBoundary( searchStr, startPos,
aSrchPara.Locale,
WordType::ANYWORD_IGNOREWHITESPACES, true );
do
{
if( aWBnd.startPos >= endPos )
break;
nStt = aWBnd.startPos < startPos ? startPos : aWBnd.startPos;
nEnd = std::min(aWBnd.endPos, endPos);
if( nStt < nEnd &&
pWLD->WLD( searchStr.getStr() + nStt, nEnd - nStt ) <= nLimit )
{
aRet.subRegExpressions = 1;
aRet.startOffset = { nStt };
aRet.endOffset = { nEnd };
break;
}
nStt = nEnd - 1;
aWBnd = xBreak->nextWord( searchStr, nStt, aSrchPara.Locale,
WordType::ANYWORD_IGNOREWHITESPACES);
} while( aWBnd.startPos != aWBnd.endPos ||
(aWBnd.endPos != searchStr.getLength() && aWBnd.endPos != nEnd) );
// #i50244# aWBnd.endPos != nEnd : in case there is _no_ word (only
// whitespace) in searchStr, getWordBoundary() returned startPos,startPos
// and nextWord() does also => don't loop forever.
return aRet;
}
SearchResult TextSearch::ApproxSrchBkwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr,
sal_Int32 startPos, sal_Int32 endPos )
{
SearchResult aRet;
aRet.subRegExpressions = 0;
if( !xBreak.is() )
return aRet;
sal_Int32 nStt, nEnd;
Boundary aWBnd = xBreak->getWordBoundary( searchStr, startPos,
aSrchPara.Locale,
WordType::ANYWORD_IGNOREWHITESPACES, true );
do
{
if( aWBnd.endPos <= endPos )
break;
nStt = aWBnd.startPos < endPos ? endPos : aWBnd.startPos;
nEnd = std::min(aWBnd.endPos, startPos);
if( nStt < nEnd &&
pWLD->WLD( searchStr.getStr() + nStt, nEnd - nStt ) <= nLimit )
{
aRet.subRegExpressions = 1;
aRet.startOffset = { nEnd };
aRet.endOffset = { nStt };
break;
}
if( !nStt )
break;
aWBnd = xBreak->previousWord( searchStr, nStt, aSrchPara.Locale,
WordType::ANYWORD_IGNOREWHITESPACES);
} while( aWBnd.startPos != aWBnd.endPos || aWBnd.endPos != searchStr.getLength() );
return aRet;
}
namespace {
void setWildcardMatch( css::util::SearchResult& rRes, sal_Int32 nStartOffset, sal_Int32 nEndOffset )
{
rRes.subRegExpressions = 1;
rRes.startOffset = { nStartOffset };
rRes.endOffset = { nEndOffset };
}
}
SearchResult TextSearch::WildcardSrchFrwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr, sal_Int32 nStartPos, sal_Int32 nEndPos )
{
SearchResult aRes;
aRes.subRegExpressions = 0; // no match
sal_Int32 nStartOffset = nStartPos;
sal_Int32 nEndOffset = nEndPos;
const sal_Int32 nStringLen = searchStr.getLength();
// Forward nStartPos inclusive, nEndPos exclusive, but allow for empty
// string match with [0,0).
if (nStartPos < 0 || nEndPos > nStringLen || nEndPos < nStartPos ||
(nStartPos == nStringLen && (nStringLen != 0 || nStartPos != nEndPos)))
return aRes;
const OUString& rPattern = (bUsePrimarySrchStr ? sSrchStr : sSrchStr2);
const sal_Int32 nPatternLen = rPattern.getLength();
// Handle special cases empty pattern and/or string outside of the loop to
// not add performance penalties there and simplify.
if (nStartPos == nEndPos)
{
sal_Int32 i = 0;
while (i < nPatternLen && rPattern[i] == '*')
++i;
if (i == nPatternLen)
setWildcardMatch( aRes, nStartOffset, nEndOffset);
return aRes;
}
// Empty pattern does not match any non-empty string.
if (!nPatternLen)
return aRes;
bool bRewind = false;
sal_uInt32 cPattern = 0;
sal_Int32 nPattern = 0;
sal_Int32 nAfterFakePattern = nPattern;
if (mbWildcardAllowSubstring)
{
// Fake a leading '*' wildcard.
cPattern = '*';
bRewind = true;
// Assume a non-'*' pattern character follows. If it is a '*' instead
// that will be handled in the loop by setting nPat.
sal_uInt32 cu = rPattern.iterateCodePoints( &nAfterFakePattern);
if (cu == mcWildcardEscapeChar && mcWildcardEscapeChar && nAfterFakePattern < nPatternLen)
rPattern.iterateCodePoints( &nAfterFakePattern);
}
sal_Int32 nString = nStartPos, nPat = -1, nStr = -1, nLastAsterisk = -1;
sal_uInt32 cPatternAfterAsterisk = 0;
bool bEscaped = false, bEscapedAfterAsterisk = false;
// The loop code tries to avoid costly calls to iterateCodePoints() when
// possible.
do
{
if (bRewind)
{
// Reuse cPattern after '*', nPattern was correspondingly
// incremented to point behind cPattern.
bRewind = false;
}
else if (nPattern < nPatternLen)
{
// nPattern will be incremented by iterateCodePoints().
cPattern = rPattern.iterateCodePoints( &nPattern);
if (cPattern == mcWildcardEscapeChar && mcWildcardEscapeChar && nPattern < nPatternLen)
{
bEscaped = true;
cPattern = rPattern.iterateCodePoints( &nPattern);
}
}
else
{
// A trailing '*' is handled below.
if (mbWildcardAllowSubstring)
{
// If the pattern is consumed and substring match allowed we're good.
setWildcardMatch( aRes, nStartOffset, nString);
return aRes;
}
else if (nString < nEndPos && nLastAsterisk >= 0)
{
// If substring match is not allowed try a greedy '*' match.
nPattern = nLastAsterisk;
continue; // do
}
else
return aRes;
}
if (cPattern == '*' && !bEscaped)
{
// '*' is one code unit, so not using iterateCodePoints() is ok.
while (nPattern < nPatternLen && rPattern[nPattern] == '*')
++nPattern;
if (nPattern >= nPatternLen)
{
// Last pattern is '*', remaining string matches.
setWildcardMatch( aRes, nStartOffset, nEndOffset);
return aRes;
}
nLastAsterisk = nPattern; // Remember last encountered '*'.
// cPattern will be the next non-'*' character, nPattern
// incremented.
cPattern = rPattern.iterateCodePoints( &nPattern);
if (cPattern == mcWildcardEscapeChar && mcWildcardEscapeChar && nPattern < nPatternLen)
{
bEscaped = true;
cPattern = rPattern.iterateCodePoints( &nPattern);
}
cPatternAfterAsterisk = cPattern;
bEscapedAfterAsterisk = bEscaped;
nPat = nPattern; // Remember position of pattern behind '*', already incremented.
nStr = nString; // Remember the current string to be matched.
}
if (nString >= nEndPos)
// Whatever follows in pattern, string will not match.
return aRes;
// nString will be incremented by iterateCodePoints().
sal_uInt32 cString = searchStr.iterateCodePoints( &nString);
if ((cPattern != '?' || bEscaped) && cPattern != cString)
{
if (nPat == -1)
// Non-match already without any '*' pattern.
return aRes;
bRewind = true;
nPattern = nPat; // Rewind pattern to character behind '*', already incremented.
cPattern = cPatternAfterAsterisk;
bEscaped = bEscapedAfterAsterisk;
searchStr.iterateCodePoints( &nStr);
nString = nStr; // Restore incremented remembered string position.
if (nPat == nAfterFakePattern)
{
// Next start offset will be the next character.
nStartOffset = nString;
}
}
else
{
// An unescaped '?' pattern matched any character, or characters
// matched. Reset only escaped state.
bEscaped = false;
}
}
while (nString < nEndPos);
if (bRewind)
return aRes;
// Eat trailing '*' pattern that matches anything, including nothing.
// '*' is one code unit, so not using iterateCodePoints() is ok.
while (nPattern < nPatternLen && rPattern[nPattern] == '*')
++nPattern;
if (nPattern == nPatternLen)
setWildcardMatch( aRes, nStartOffset, nEndOffset);
return aRes;
}
SearchResult TextSearch::WildcardSrchBkwrd( std::unique_lock<std::mutex>& /*rGuard*/, const OUString& searchStr, sal_Int32 nStartPos, sal_Int32 nEndPos )
{
SearchResult aRes;
aRes.subRegExpressions = 0; // no match
sal_Int32 nStartOffset = nStartPos;
sal_Int32 nEndOffset = nEndPos;
const sal_Int32 nStringLen = searchStr.getLength();
// Backward nStartPos exclusive, nEndPos inclusive, but allow for empty
// string match with (0,0].
if (nStartPos > nStringLen || nEndPos < 0 || nStartPos < nEndPos ||
(nEndPos == nStringLen && (nStringLen != 0 || nStartPos != nEndPos)))
return aRes;
const OUString& rPattern = (bUsePrimarySrchStr ? sSrchStr : sSrchStr2);
sal_Int32 nPatternLen = rPattern.getLength();
// Handle special cases empty pattern and/or string outside of the loop to
// not add performance penalties there and simplify.
if (nStartPos == nEndPos)
{
sal_Int32 i = 0;
while (i < nPatternLen && rPattern[i] == '*')
++i;
if (i == nPatternLen)
setWildcardMatch( aRes, nStartOffset, nEndOffset);
return aRes;
}
// Empty pattern does not match any non-empty string.
if (!nPatternLen)
return aRes;
// Reverse escaped patterns to ease the handling of escapes, keeping escape
// and following character as one sequence in backward direction.
if ((bUsePrimarySrchStr && maWildcardReversePattern.isEmpty()) ||
(!bUsePrimarySrchStr && maWildcardReversePattern2.isEmpty()))
{
OUStringBuffer aPatternBuf( rPattern);
sal_Int32 nIndex = 0;
while (nIndex < nPatternLen)
{
const sal_Int32 nOld = nIndex;
const sal_uInt32 cu = rPattern.iterateCodePoints( &nIndex);
if (cu == mcWildcardEscapeChar)
{
if (nIndex < nPatternLen)
{
if (nIndex - nOld == 1)
{
// Simply move code units, we already memorized the one
// in 'cu'.
const sal_Int32 nOld2 = nIndex;
rPattern.iterateCodePoints( &nIndex);
for (sal_Int32 i=0; i < nIndex - nOld2; ++i)
aPatternBuf[nOld+i] = rPattern[nOld2+i];
aPatternBuf[nIndex-1] = static_cast<sal_Unicode>(cu);
}
else
{
// Copy the escape character code units first in the
// unlikely case that it would not be of BMP.
assert(nIndex - nOld == 2); // it's UTF-16, so...
sal_Unicode buf[2];
buf[0] = rPattern[nOld];
buf[1] = rPattern[nOld+1];
const sal_Int32 nOld2 = nIndex;
rPattern.iterateCodePoints( &nIndex);
for (sal_Int32 i=0; i < nIndex - nOld2; ++i)
aPatternBuf[nOld+i] = rPattern[nOld2+i];
aPatternBuf[nIndex-2] = buf[0];
aPatternBuf[nIndex-1] = buf[1];
}
}
else
{
// Trailing escape would become leading escape, do what?
// Eliminate.
aPatternBuf.remove( nOld, nIndex - nOld);
}
}
}
if (bUsePrimarySrchStr)
maWildcardReversePattern = aPatternBuf.makeStringAndClear();
else
maWildcardReversePattern2 = aPatternBuf.makeStringAndClear();
}
const OUString& rReversePattern = (bUsePrimarySrchStr ? maWildcardReversePattern : maWildcardReversePattern2);
nPatternLen = rReversePattern.getLength();
bool bRewind = false;
sal_uInt32 cPattern = 0;
sal_Int32 nPattern = nPatternLen;
sal_Int32 nAfterFakePattern = nPattern;
if (mbWildcardAllowSubstring)
{
// Fake a trailing '*' wildcard.
cPattern = '*';
bRewind = true;
// Assume a non-'*' pattern character follows. If it is a '*' instead
// that will be handled in the loop by setting nPat.
sal_uInt32 cu = rReversePattern.iterateCodePoints( &nAfterFakePattern, -1);
if (cu == mcWildcardEscapeChar && mcWildcardEscapeChar && nAfterFakePattern > 0)
rReversePattern.iterateCodePoints( &nAfterFakePattern, -1);
}
sal_Int32 nString = nStartPos, nPat = -1, nStr = -1, nLastAsterisk = -1;
sal_uInt32 cPatternAfterAsterisk = 0;
bool bEscaped = false, bEscapedAfterAsterisk = false;
// The loop code tries to avoid costly calls to iterateCodePoints() when
// possible.
do
{
if (bRewind)
{
// Reuse cPattern after '*', nPattern was correspondingly
// decremented to point before cPattern.
bRewind = false;
}
else if (nPattern > 0)
{
// nPattern will be decremented by iterateCodePoints().
cPattern = rReversePattern.iterateCodePoints( &nPattern, -1);
if (cPattern == mcWildcardEscapeChar && mcWildcardEscapeChar && nPattern > 0)
{
bEscaped = true;
cPattern = rReversePattern.iterateCodePoints( &nPattern, -1);
}
}
else
{
// A trailing '*' is handled below.
if (mbWildcardAllowSubstring)
{
// If the pattern is consumed and substring match allowed we're good.
setWildcardMatch( aRes, nStartOffset, nString);
return aRes;
}
else if (nString > nEndPos && nLastAsterisk >= 0)
{
// If substring match is not allowed try a greedy '*' match.
nPattern = nLastAsterisk;
continue; // do
}
else
return aRes;
}
if (cPattern == '*' && !bEscaped)
{
// '*' is one code unit, so not using iterateCodePoints() is ok.
while (nPattern > 0 && rReversePattern[nPattern-1] == '*')
--nPattern;
if (nPattern <= 0)
{
// First pattern is '*', remaining string matches.
setWildcardMatch( aRes, nStartOffset, nEndOffset);
return aRes;
}
nLastAsterisk = nPattern; // Remember last encountered '*'.
// cPattern will be the previous non-'*' character, nPattern
// decremented.
cPattern = rReversePattern.iterateCodePoints( &nPattern, -1);
if (cPattern == mcWildcardEscapeChar && mcWildcardEscapeChar && nPattern > 0)
{
bEscaped = true;
cPattern = rReversePattern.iterateCodePoints( &nPattern, -1);
}
cPatternAfterAsterisk = cPattern;
bEscapedAfterAsterisk = bEscaped;
nPat = nPattern; // Remember position of pattern before '*', already decremented.
nStr = nString; // Remember the current string to be matched.
}
if (nString <= nEndPos)
// Whatever leads in pattern, string will not match.
return aRes;
// nString will be decremented by iterateCodePoints().
sal_uInt32 cString = searchStr.iterateCodePoints( &nString, -1);
if ((cPattern != '?' || bEscaped) && cPattern != cString)
{
if (nPat == -1)
// Non-match already without any '*' pattern.
return aRes;
bRewind = true;
nPattern = nPat; // Rewind pattern to character before '*', already decremented.
cPattern = cPatternAfterAsterisk;
bEscaped = bEscapedAfterAsterisk;
searchStr.iterateCodePoints( &nStr, -1);
nString = nStr; // Restore decremented remembered string position.
if (nPat == nAfterFakePattern)
{
// Next start offset will be this character (exclusive).
nStartOffset = nString;
}
}
else
{
// An unescaped '?' pattern matched any character, or characters
// matched. Reset only escaped state.
bEscaped = false;
}
}
while (nString > nEndPos);
if (bRewind)
return aRes;
// Eat leading '*' pattern that matches anything, including nothing.
// '*' is one code unit, so not using iterateCodePoints() is ok.
while (nPattern > 0 && rReversePattern[nPattern-1] == '*')
--nPattern;
if (nPattern == 0)
setWildcardMatch( aRes, nStartOffset, nEndOffset);
return aRes;
}
OUString SAL_CALL
TextSearch::getImplementationName()
{
return u"com.sun.star.util.TextSearch_i18n"_ustr;
}
sal_Bool SAL_CALL TextSearch::supportsService(const OUString& rServiceName)
{
return cppu::supportsService(this, rServiceName);
}
Sequence< OUString > SAL_CALL
TextSearch::getSupportedServiceNames()
{
return { u"com.sun.star.util.TextSearch"_ustr, u"com.sun.star.util.TextSearch2"_ustr };
}
extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface*
i18npool_TextSearch_get_implementation(
css::uno::XComponentContext* context , css::uno::Sequence<css::uno::Any> const&)
{
return cppu::acquire(new TextSearch(context));
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V530 The return value of function 'remove' is required to be utilized.
↑ V1053 Calling the 'setOptions' virtual function in the constructor may lead to unexpected result at runtime.
↑ V764 Possible incorrect order of arguments passed to 'lcl_findRegex' function: 'endPos' and 'startPos'.