/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <algorithm>
#include <unordered_map>
#include <cassert>
#include <list>
#include <set>
#include <utility>
#include <vector>
#include <stdlib.h>
#include <string.h>
#include <sal/log.hxx>
#include <osl/interlck.h>
#include <osl/mutex.hxx>
#include <rtl/ustring.hxx>
#include <osl/diagnose.h>
#include <typelib/typedescription.h>
#include <uno/any2.h>
#include <o3tl/string_view.hxx>
#include "typelib.hxx"
using namespace osl;
#ifdef _WIN32
#pragma pack(push, 8)
#endif
namespace {
/**
* The double member determines the alignment.
* Under OS2 and MS-Windows the Alignment is min( 8, sizeof( type ) ).
* The alignment of a structure is min( 8, sizeof( max basic type ) ), the greatest basic type
* determines the alignment.
*/
struct AlignSize_Impl
{
sal_Int16 nInt16;
double dDouble;
};
}
#ifdef _WIN32
#pragma pack(pop)
#endif
// the value of the maximal alignment
const sal_Int32 nMaxAlignment = static_cast<sal_Int32>( reinterpret_cast<sal_Size>(&reinterpret_cast<AlignSize_Impl *>(16)->dDouble) - 16);
static sal_Int32 adjustAlignment( sal_Int32 nRequestedAlignment )
{
if( nRequestedAlignment > nMaxAlignment )
nRequestedAlignment = nMaxAlignment;
return nRequestedAlignment;
}
/**
* Calculate the new size of the structure.
*/
static sal_Int32 newAlignedSize(
sal_Int32 OldSize, sal_Int32 ElementSize, sal_Int32 NeededAlignment )
{
NeededAlignment = adjustAlignment( NeededAlignment );
return (OldSize + NeededAlignment -1) / NeededAlignment * NeededAlignment + ElementSize;
}
static sal_Int32 getDescriptionSize( typelib_TypeClass eTypeClass )
{
OSL_ASSERT( typelib_TypeClass_TYPEDEF != eTypeClass );
sal_Int32 nSize;
// The reference is the description
// if the description is empty, then it must be filled with
// the new description
switch( eTypeClass )
{
case typelib_TypeClass_SEQUENCE:
nSize = sal_Int32(sizeof( typelib_IndirectTypeDescription ));
break;
case typelib_TypeClass_STRUCT:
nSize = sal_Int32(sizeof( typelib_StructTypeDescription ));
break;
case typelib_TypeClass_EXCEPTION:
nSize = sal_Int32(sizeof( typelib_CompoundTypeDescription ));
break;
case typelib_TypeClass_ENUM:
nSize = sal_Int32(sizeof( typelib_EnumTypeDescription ));
break;
case typelib_TypeClass_INTERFACE:
nSize = sal_Int32(sizeof( typelib_InterfaceTypeDescription ));
break;
case typelib_TypeClass_INTERFACE_METHOD:
nSize = sal_Int32(sizeof( typelib_InterfaceMethodTypeDescription ));
break;
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
nSize = sal_Int32(sizeof( typelib_InterfaceAttributeTypeDescription ));
break;
default:
nSize = sal_Int32(sizeof( typelib_TypeDescription ));
}
return nSize;
}
namespace {
struct equalStr_Impl
{
bool operator()(const sal_Unicode * const & s1, const sal_Unicode * const & s2) const
{ return 0 == rtl_ustr_compare( s1, s2 ); }
};
struct hashStr_Impl
{
size_t operator()(const sal_Unicode * const & s) const
{ return rtl_ustr_hashCode( s ); }
};
}
// Heavy hack, the const sal_Unicode * is hold by the typedescription reference
typedef std::unordered_map< const sal_Unicode *, typelib_TypeDescriptionReference *,
hashStr_Impl, equalStr_Impl > WeakMap_Impl;
typedef std::pair< void *, typelib_typedescription_Callback > CallbackEntry;
typedef std::list< CallbackEntry > CallbackSet_Impl;
typedef std::list< typelib_TypeDescription * > TypeDescriptionList_Impl;
// # of cached elements
constexpr auto nCacheSize = 256;
namespace {
struct TypeDescriptor_Init_Impl
{
// all type description references
WeakMap_Impl maWeakMap;
// all type description callbacks
CallbackSet_Impl maCallbacks;
// A cache to hold descriptions
TypeDescriptionList_Impl maCache;
// The mutex to guard all type library accesses
Mutex maMutex;
inline void callChain( typelib_TypeDescription ** ppRet, rtl_uString * pName );
#if OSL_DEBUG_LEVEL > 0
// only for debugging
sal_Int32 nTypeDescriptionCount = 0;
sal_Int32 nCompoundTypeDescriptionCount = 0;
sal_Int32 nIndirectTypeDescriptionCount = 0;
sal_Int32 nEnumTypeDescriptionCount = 0;
sal_Int32 nInterfaceMethodTypeDescriptionCount = 0;
sal_Int32 nInterfaceAttributeTypeDescriptionCount = 0;
sal_Int32 nInterfaceTypeDescriptionCount = 0;
sal_Int32 nTypeDescriptionReferenceCount = 0;
#endif
TypeDescriptor_Init_Impl() = default;
~TypeDescriptor_Init_Impl();
};
}
inline void TypeDescriptor_Init_Impl::callChain(
typelib_TypeDescription ** ppRet, rtl_uString * pName )
{
assert(ppRet != nullptr);
assert(*ppRet == nullptr);
for( const CallbackEntry & rEntry : maCallbacks )
{
(*rEntry.second)( rEntry.first, ppRet, pName );
if( *ppRet )
return;
}
}
TypeDescriptor_Init_Impl::~TypeDescriptor_Init_Impl()
{
for( typelib_TypeDescription* pItem : maCache )
{
typelib_typedescription_release( pItem );
}
{
std::vector< typelib_TypeDescriptionReference * > ppTDR;
ppTDR.reserve( maWeakMap.size() );
// save all weak references
for( const auto& rEntry : maWeakMap )
{
ppTDR.push_back( rEntry.second );
typelib_typedescriptionreference_acquire( ppTDR.back() );
}
for( typelib_TypeDescriptionReference * pTDR : ppTDR )
{
OSL_ASSERT( pTDR->nRefCount > pTDR->nStaticRefCount );
pTDR->nRefCount -= pTDR->nStaticRefCount;
if( pTDR->pType && !pTDR->pType->bOnDemand )
{
pTDR->pType->bOnDemand = true;
typelib_typedescription_release( pTDR->pType );
}
typelib_typedescriptionreference_release( pTDR );
}
#if defined SAL_LOG_INFO
for( const auto& rEntry : maWeakMap )
{
typelib_TypeDescriptionReference * pTDR = rEntry.second;
if (pTDR)
{
OString aTypeName( OUStringToOString( OUString::unacquired(&pTDR->pTypeName), RTL_TEXTENCODING_ASCII_US ) );
SAL_INFO("cppu.typelib", "remaining type: " << aTypeName << "; ref count = " << pTDR->nRefCount);
}
else
{
SAL_INFO("cppu.typelib", "remaining null type entry!?");
}
}
#endif
}
#if OSL_DEBUG_LEVEL > 0
SAL_INFO_IF( nTypeDescriptionCount, "cppu.typelib", "nTypeDescriptionCount is not zero" );
SAL_INFO_IF( nCompoundTypeDescriptionCount, "cppu.typelib", "nCompoundTypeDescriptionCount is not zero" );
SAL_INFO_IF( nIndirectTypeDescriptionCount, "cppu.typelib", "nIndirectTypeDescriptionCount is not zero" );
SAL_INFO_IF( nEnumTypeDescriptionCount, "cppu.typelib", "nEnumTypeDescriptionCount is not zero" );
SAL_INFO_IF( nInterfaceMethodTypeDescriptionCount, "cppu.typelib", "nInterfaceMethodTypeDescriptionCount is not zero" );
SAL_INFO_IF( nInterfaceAttributeTypeDescriptionCount, "cppu.typelib", "nInterfaceAttributeTypeDescriptionCount is not zero" );
SAL_INFO_IF( nInterfaceTypeDescriptionCount, "cppu.typelib", "nInterfaceTypeDescriptionCount is not zero" );
SAL_INFO_IF( nTypeDescriptionReferenceCount, "cppu.typelib", "nTypeDescriptionReferenceCount is not zero" );
#endif
SAL_INFO_IF( !maCallbacks.empty(), "cppu.typelib", "pCallbacks is not NULL or empty" );
};
namespace {
TypeDescriptor_Init_Impl& Init()
{
static TypeDescriptor_Init_Impl SINGLETON;
return SINGLETON;
}
}
extern "C" void SAL_CALL typelib_typedescription_registerCallback(
void * pContext, typelib_typedescription_Callback pCallback ) noexcept
{
// todo mt safe: guard is no solution, can not acquire while calling callback!
TypeDescriptor_Init_Impl &rInit = Init();
// OslGuard aGuard( rInit.getMutex() );
rInit.maCallbacks.push_back( CallbackEntry( pContext, pCallback ) );
}
extern "C" void SAL_CALL typelib_typedescription_revokeCallback(
void * pContext, typelib_typedescription_Callback pCallback ) noexcept
{
TypeDescriptor_Init_Impl &rInit = Init();
{
// todo mt safe: guard is no solution, can not acquire while calling callback!
// OslGuard aGuard( rInit.getMutex() );
CallbackEntry aEntry( pContext, pCallback );
std::erase(rInit.maCallbacks, aEntry);
}
}
static void typelib_typedescription_initTables(
typelib_TypeDescription * pTD )
{
typelib_InterfaceTypeDescription * pITD = reinterpret_cast<typelib_InterfaceTypeDescription *>(pTD);
std::vector<bool> aReadWriteAttributes(pITD->nAllMembers);
for ( sal_Int32 i = pITD->nAllMembers; i--; )
{
aReadWriteAttributes[i] = false;
if( typelib_TypeClass_INTERFACE_ATTRIBUTE == pITD->ppAllMembers[i]->eTypeClass )
{
typelib_TypeDescription * pM = nullptr;
TYPELIB_DANGER_GET( &pM, pITD->ppAllMembers[i] );
OSL_ASSERT( pM );
if (pM)
{
aReadWriteAttributes[i] = !reinterpret_cast<typelib_InterfaceAttributeTypeDescription *>(pM)->bReadOnly;
TYPELIB_DANGER_RELEASE( pM );
}
else
{
SAL_INFO( "cppu.typelib", "cannot get attribute type description: " << pITD->ppAllMembers[i]->pTypeName );
}
}
}
MutexGuard aGuard( Init().maMutex );
if( pTD->bComplete )
return;
// create the index table from member to function table
pITD->pMapMemberIndexToFunctionIndex = new sal_Int32[ pITD->nAllMembers ];
sal_Int32 nAdditionalOffset = 0; // +1 for read/write attributes
sal_Int32 i;
for( i = 0; i < pITD->nAllMembers; i++ )
{
// index to the get method of the attribute
pITD->pMapMemberIndexToFunctionIndex[i] = i + nAdditionalOffset;
// extra offset if it is a read/write attribute?
if (aReadWriteAttributes[i])
{
// a read/write attribute
nAdditionalOffset++;
}
}
// create the index table from function to member table
pITD->pMapFunctionIndexToMemberIndex = new sal_Int32[ pITD->nAllMembers + nAdditionalOffset ];
nAdditionalOffset = 0; // +1 for read/write attributes
for( i = 0; i < pITD->nAllMembers; i++ )
{
// index to the get method of the attribute
pITD->pMapFunctionIndexToMemberIndex[i + nAdditionalOffset] = i;
// extra offset if it is a read/write attribute?
if (aReadWriteAttributes[i])
{
// a read/write attribute
pITD->pMapFunctionIndexToMemberIndex[i + ++nAdditionalOffset] = i;
}
}
// must be the last action after all initialization is done
pITD->nMapFunctionIndexToMemberIndex = pITD->nAllMembers + nAdditionalOffset;
pTD->bComplete = true;
}
namespace {
template<typename T> T * allocTypeDescription() {
return reinterpret_cast<T *>(new char[sizeof (T)]);
}
void freeTypeDescription(typelib_TypeDescription const * desc) {
delete[] reinterpret_cast<char const *>(desc);
}
// In some situations (notably typelib_typedescription_newInterfaceMethod and
// typelib_typedescription_newInterfaceAttribute), only the members nMembers,
// ppMembers, nAllMembers, and ppAllMembers of an incomplete interface type
// description are necessary, but not the additional
// pMapMemberIndexToFunctionIndex, nMapFunctionIndexToMemberIndex, and
// pMapFunctionIndexToMemberIndex (which are computed by
// typelib_typedescription_initTables). Furthermore, in those situations, it
// might be illegal to compute those tables, as the creation of the interface
// member type descriptions would recursively require a complete interface type
// description. The parameter initTables controls whether or not to call
// typelib_typedescription_initTables in those situations.
bool complete(typelib_TypeDescription ** ppTypeDescr, bool initTables) {
if ((*ppTypeDescr)->bComplete)
return true;
OSL_ASSERT( (typelib_TypeClass_STRUCT == (*ppTypeDescr)->eTypeClass ||
typelib_TypeClass_EXCEPTION == (*ppTypeDescr)->eTypeClass ||
typelib_TypeClass_ENUM == (*ppTypeDescr)->eTypeClass ||
typelib_TypeClass_INTERFACE == (*ppTypeDescr)->eTypeClass) &&
!TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( (*ppTypeDescr)->eTypeClass ) );
if (typelib_TypeClass_INTERFACE == (*ppTypeDescr)->eTypeClass &&
reinterpret_cast<typelib_InterfaceTypeDescription *>(*ppTypeDescr)->ppAllMembers)
{
if (initTables) {
typelib_typedescription_initTables( *ppTypeDescr );
}
return true;
}
typelib_TypeDescription * pTD = nullptr;
// on demand access of complete td
TypeDescriptor_Init_Impl &rInit = Init();
rInit.callChain( &pTD, (*ppTypeDescr)->pTypeName );
if (pTD)
{
if (typelib_TypeClass_TYPEDEF == pTD->eTypeClass)
{
typelib_typedescriptionreference_getDescription(
&pTD, reinterpret_cast<typelib_IndirectTypeDescription *>(pTD)->pType );
OSL_ASSERT( pTD );
if (! pTD)
return false;
}
OSL_ASSERT( typelib_TypeClass_TYPEDEF != pTD->eTypeClass );
// typedescription found
// set to on demand
pTD->bOnDemand = true;
if (pTD->eTypeClass == typelib_TypeClass_INTERFACE
&& !pTD->bComplete && initTables)
{
// mandatory info from callback chain
OSL_ASSERT( reinterpret_cast<typelib_InterfaceTypeDescription *>(pTD)->ppAllMembers );
// complete except of tables init
typelib_typedescription_initTables( pTD );
pTD->bComplete = true;
}
// The type description is hold by the reference until
// on demand is activated.
::typelib_typedescription_register( &pTD ); // replaces incomplete one
OSL_ASSERT( pTD == *ppTypeDescr ); // has to merge into existing one
// insert into the cache
MutexGuard aGuard( rInit.maMutex );
if( rInit.maCache.size() >= nCacheSize )
{
typelib_typedescription_release( rInit.maCache.front() );
rInit.maCache.pop_front();
}
// descriptions in the cache must be acquired!
typelib_typedescription_acquire( pTD );
rInit.maCache.push_back( pTD );
OSL_ASSERT(
pTD->bComplete
|| (pTD->eTypeClass == typelib_TypeClass_INTERFACE
&& !initTables));
::typelib_typedescription_release( *ppTypeDescr );
*ppTypeDescr = pTD;
}
else
{
SAL_INFO(
"cppu.typelib",
"type cannot be completed: " << OUString::unacquired(&(*ppTypeDescr)->pTypeName));
return false;
}
return true;
}
}
extern "C" void typelib_typedescription_newEmpty(
typelib_TypeDescription ** ppRet,
typelib_TypeClass eTypeClass, rtl_uString * pTypeName ) noexcept
{
if( *ppRet )
{
typelib_typedescription_release( *ppRet );
*ppRet = nullptr;
}
OSL_ASSERT( typelib_TypeClass_TYPEDEF != eTypeClass );
typelib_TypeDescription * pRet;
switch( eTypeClass )
{
case typelib_TypeClass_SEQUENCE:
{
auto pTmp = allocTypeDescription<typelib_IndirectTypeDescription>();
pRet = &pTmp->aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nIndirectTypeDescriptionCount );
#endif
pTmp->pType = nullptr;
// coverity[leaked_storage] - this is on purpose
}
break;
case typelib_TypeClass_STRUCT:
{
// FEATURE_EMPTYCLASS
auto pTmp = allocTypeDescription<typelib_StructTypeDescription>();
pRet = &pTmp->aBase.aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nCompoundTypeDescriptionCount );
#endif
pTmp->aBase.pBaseTypeDescription = nullptr;
pTmp->aBase.nMembers = 0;
pTmp->aBase.pMemberOffsets = nullptr;
pTmp->aBase.ppTypeRefs = nullptr;
pTmp->aBase.ppMemberNames = nullptr;
pTmp->pParameterizedTypes = nullptr;
// coverity[leaked_storage] - this is on purpose
}
break;
case typelib_TypeClass_EXCEPTION:
{
// FEATURE_EMPTYCLASS
auto pTmp = allocTypeDescription<typelib_CompoundTypeDescription>();
pRet = &pTmp->aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nCompoundTypeDescriptionCount );
#endif
pTmp->pBaseTypeDescription = nullptr;
pTmp->nMembers = 0;
pTmp->pMemberOffsets = nullptr;
pTmp->ppTypeRefs = nullptr;
pTmp->ppMemberNames = nullptr;
// coverity[leaked_storage] - this is on purpose
}
break;
case typelib_TypeClass_ENUM:
{
auto pTmp = allocTypeDescription<typelib_EnumTypeDescription>();
pRet = &pTmp->aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nEnumTypeDescriptionCount );
#endif
pTmp->nDefaultEnumValue = 0;
pTmp->nEnumValues = 0;
pTmp->ppEnumNames = nullptr;
pTmp->pEnumValues = nullptr;
// coverity[leaked_storage] - this is on purpose
}
break;
case typelib_TypeClass_INTERFACE:
{
auto pTmp = allocTypeDescription<
typelib_InterfaceTypeDescription>();
pRet = &pTmp->aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nInterfaceTypeDescriptionCount );
#endif
pTmp->pBaseTypeDescription = nullptr;
pTmp->nMembers = 0;
pTmp->ppMembers = nullptr;
pTmp->nAllMembers = 0;
pTmp->ppAllMembers = nullptr;
pTmp->nMapFunctionIndexToMemberIndex = 0;
pTmp->pMapFunctionIndexToMemberIndex = nullptr;
pTmp->pMapMemberIndexToFunctionIndex= nullptr;
pTmp->nBaseTypes = 0;
pTmp->ppBaseTypes = nullptr;
// coverity[leaked_storage] - this is on purpose
}
break;
case typelib_TypeClass_INTERFACE_METHOD:
{
auto pTmp = allocTypeDescription<
typelib_InterfaceMethodTypeDescription>();
pRet = &pTmp->aBase.aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nInterfaceMethodTypeDescriptionCount );
#endif
pTmp->aBase.pMemberName = nullptr;
pTmp->pReturnTypeRef = nullptr;
pTmp->nParams = 0;
pTmp->pParams = nullptr;
pTmp->nExceptions = 0;
pTmp->ppExceptions = nullptr;
pTmp->pInterface = nullptr;
pTmp->pBaseRef = nullptr;
pTmp->nIndex = 0;
// coverity[leaked_storage] - this is on purpose
}
break;
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
auto * pTmp = allocTypeDescription<
typelib_InterfaceAttributeTypeDescription>();
pRet = &pTmp->aBase.aBase;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nInterfaceAttributeTypeDescriptionCount );
#endif
pTmp->aBase.pMemberName = nullptr;
pTmp->pAttributeTypeRef = nullptr;
pTmp->pInterface = nullptr;
pTmp->pBaseRef = nullptr;
pTmp->nIndex = 0;
pTmp->nGetExceptions = 0;
pTmp->ppGetExceptions = nullptr;
pTmp->nSetExceptions = 0;
pTmp->ppSetExceptions = nullptr;
// coverity[leaked_storage] - this is on purpose
}
break;
default:
{
pRet = allocTypeDescription<typelib_TypeDescription>();
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &Init().nTypeDescriptionCount );
#endif
}
}
pRet->nRefCount = 1; // reference count is initially 1
pRet->nStaticRefCount = 0;
pRet->eTypeClass = eTypeClass;
pRet->pUniqueIdentifier = nullptr;
pRet->pReserved = nullptr;
pRet->pTypeName = pTypeName;
rtl_uString_acquire( pRet->pTypeName );
pRet->pSelf = pRet;
pRet->bComplete = true;
pRet->nSize = 0;
pRet->nAlignment = 0;
pRet->pWeakRef = nullptr;
pRet->bOnDemand = false;
*ppRet = pRet;
}
namespace {
void newTypeDescription(
typelib_TypeDescription ** ppRet, typelib_TypeClass eTypeClass,
rtl_uString * pTypeName, typelib_TypeDescriptionReference * pType,
sal_Int32 nMembers, typelib_CompoundMember_Init * pCompoundMembers,
typelib_StructMember_Init * pStructMembers)
{
OSL_ASSERT(
(pCompoundMembers == nullptr || pStructMembers == nullptr)
&& (pStructMembers == nullptr || eTypeClass == typelib_TypeClass_STRUCT));
if (typelib_TypeClass_TYPEDEF == eTypeClass)
{
SAL_WARN("cppu.typelib", "unexpected typedef!" );
typelib_typedescriptionreference_getDescription( ppRet, pType );
return;
}
typelib_typedescription_newEmpty( ppRet, eTypeClass, pTypeName );
switch( eTypeClass )
{
case typelib_TypeClass_SEQUENCE:
{
OSL_ASSERT( nMembers == 0 );
typelib_typedescriptionreference_acquire( pType );
reinterpret_cast<typelib_IndirectTypeDescription *>(*ppRet)->pType = pType;
}
break;
case typelib_TypeClass_EXCEPTION:
case typelib_TypeClass_STRUCT:
{
// FEATURE_EMPTYCLASS
typelib_CompoundTypeDescription * pTmp = reinterpret_cast<typelib_CompoundTypeDescription*>(*ppRet);
sal_Int32 nOffset = 0;
if( pType )
{
typelib_typedescriptionreference_getDescription(
reinterpret_cast<typelib_TypeDescription **>(&pTmp->pBaseTypeDescription), pType );
nOffset = pTmp->pBaseTypeDescription->aBase.nSize;
OSL_ENSURE( newAlignedSize( 0, pTmp->pBaseTypeDescription->aBase.nSize, pTmp->pBaseTypeDescription->aBase.nAlignment ) == pTmp->pBaseTypeDescription->aBase.nSize, "### unexpected offset!" );
}
if( nMembers )
{
pTmp->nMembers = nMembers;
pTmp->pMemberOffsets = new sal_Int32[ nMembers ];
pTmp->ppTypeRefs = new typelib_TypeDescriptionReference *[ nMembers ];
pTmp->ppMemberNames = new rtl_uString *[ nMembers ];
bool polymorphic = eTypeClass == typelib_TypeClass_STRUCT
&& OUString::unacquired(&pTypeName).indexOf('<') >= 0;
assert(!polymorphic || pStructMembers != nullptr);
if (polymorphic) {
reinterpret_cast< typelib_StructTypeDescription * >(pTmp)->
pParameterizedTypes = new sal_Bool[nMembers];
}
for( sal_Int32 i = 0 ; i < nMembers; i++ )
{
// read the type and member names
pTmp->ppTypeRefs[i] = nullptr;
if (pCompoundMembers != nullptr) {
typelib_typedescriptionreference_new(
pTmp->ppTypeRefs +i, pCompoundMembers[i].eTypeClass,
pCompoundMembers[i].pTypeName );
pTmp->ppMemberNames[i]
= pCompoundMembers[i].pMemberName;
rtl_uString_acquire( pTmp->ppMemberNames[i] );
} else {
typelib_typedescriptionreference_new(
pTmp->ppTypeRefs +i,
pStructMembers[i].aBase.eTypeClass,
pStructMembers[i].aBase.pTypeName );
pTmp->ppMemberNames[i]
= pStructMembers[i].aBase.pMemberName;
rtl_uString_acquire(pTmp->ppMemberNames[i]);
}
assert(pTmp->ppTypeRefs[i]);
// write offset
sal_Int32 size;
sal_Int32 alignment;
if (pTmp->ppTypeRefs[i]->eTypeClass ==
typelib_TypeClass_SEQUENCE)
{
// Take care of recursion like
// struct S { sequence<S> x; };
size = sizeof(void *);
alignment = adjustAlignment(size);
} else {
typelib_TypeDescription * pTD = nullptr;
TYPELIB_DANGER_GET( &pTD, pTmp->ppTypeRefs[i] );
OSL_ENSURE( pTD->nSize, "### void member?" );
size = pTD->nSize;
alignment = pTD->nAlignment;
TYPELIB_DANGER_RELEASE( pTD );
}
nOffset = newAlignedSize( nOffset, size, alignment );
pTmp->pMemberOffsets[i] = nOffset - size;
if (polymorphic) {
reinterpret_cast< typelib_StructTypeDescription * >(
pTmp)->pParameterizedTypes[i]
= pStructMembers[i].bParameterizedType;
}
}
}
}
break;
default:
break;
}
if( !TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( eTypeClass ) )
(*ppRet)->pWeakRef = reinterpret_cast<typelib_TypeDescriptionReference *>(*ppRet);
if( eTypeClass != typelib_TypeClass_VOID )
{
// sizeof(void) not allowed
(*ppRet)->nSize = typelib_typedescription_getAlignedUnoSize( (*ppRet), 0, (*ppRet)->nAlignment );
(*ppRet)->nAlignment = adjustAlignment( (*ppRet)->nAlignment );
}
}
}
extern "C" void SAL_CALL typelib_typedescription_new(
typelib_TypeDescription ** ppRet,
typelib_TypeClass eTypeClass,
rtl_uString * pTypeName,
typelib_TypeDescriptionReference * pType,
sal_Int32 nMembers,
typelib_CompoundMember_Init * pMembers ) noexcept
{
newTypeDescription(
ppRet, eTypeClass, pTypeName, pType, nMembers, pMembers, nullptr);
}
extern "C" void SAL_CALL typelib_typedescription_newStruct(
typelib_TypeDescription ** ppRet,
rtl_uString * pTypeName,
typelib_TypeDescriptionReference * pType,
sal_Int32 nMembers,
typelib_StructMember_Init * pMembers ) noexcept
{
newTypeDescription(
ppRet, typelib_TypeClass_STRUCT, pTypeName, pType, nMembers, nullptr,
pMembers);
}
extern "C" void SAL_CALL typelib_typedescription_newEnum(
typelib_TypeDescription ** ppRet,
rtl_uString * pTypeName,
sal_Int32 nDefaultValue,
sal_Int32 nEnumValues,
rtl_uString ** ppEnumNames,
sal_Int32 * pEnumValues ) noexcept
{
typelib_typedescription_newEmpty( ppRet, typelib_TypeClass_ENUM, pTypeName );
typelib_EnumTypeDescription * pEnum = reinterpret_cast<typelib_EnumTypeDescription *>(*ppRet);
pEnum->nDefaultEnumValue = nDefaultValue;
pEnum->nEnumValues = nEnumValues;
pEnum->ppEnumNames = new rtl_uString * [ nEnumValues ];
for ( sal_Int32 nPos = nEnumValues; nPos--; )
{
pEnum->ppEnumNames[nPos] = ppEnumNames[nPos];
rtl_uString_acquire( pEnum->ppEnumNames[nPos] );
}
pEnum->pEnumValues = new sal_Int32[ nEnumValues ];
::memcpy( pEnum->pEnumValues, pEnumValues, nEnumValues * sizeof(sal_Int32) );
static_assert(!TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK(typelib_TypeClass_ENUM));
(*ppRet)->pWeakRef = reinterpret_cast<typelib_TypeDescriptionReference *>(*ppRet);
// sizeof(void) not allowed
(*ppRet)->nSize = typelib_typedescription_getAlignedUnoSize( (*ppRet), 0, (*ppRet)->nAlignment );
(*ppRet)->nAlignment = adjustAlignment( (*ppRet)->nAlignment );
}
extern "C" void SAL_CALL typelib_typedescription_newInterface(
typelib_InterfaceTypeDescription ** ppRet,
rtl_uString * pTypeName,
SAL_UNUSED_PARAMETER sal_uInt32, SAL_UNUSED_PARAMETER sal_uInt16,
SAL_UNUSED_PARAMETER sal_uInt16, SAL_UNUSED_PARAMETER sal_uInt32,
SAL_UNUSED_PARAMETER sal_uInt32,
typelib_TypeDescriptionReference * pBaseInterface,
sal_Int32 nMembers,
typelib_TypeDescriptionReference ** ppMembers ) noexcept
{
// coverity[callee_ptr_arith] - not a bug
typelib_typedescription_newMIInterface(
ppRet, pTypeName, 0, 0, 0, 0, 0, pBaseInterface == nullptr ? 0 : 1,
&pBaseInterface, nMembers, ppMembers);
}
namespace {
class BaseList {
public:
struct Entry {
sal_Int32 memberOffset;
sal_Int32 directBaseIndex;
sal_Int32 directBaseMemberOffset;
typelib_InterfaceTypeDescription const * base;
};
typedef std::vector< Entry > List;
explicit BaseList(typelib_InterfaceTypeDescription const * desc);
List const & getList() const { return list; }
sal_Int32 getBaseMembers() const { return members; }
private:
typedef std::set< OUString > Set;
void calculate(
Set& allSet,
sal_Int32 directBaseIndex, Set & directBaseSet,
sal_Int32 * directBaseMembers,
typelib_InterfaceTypeDescription const * desc);
List list;
sal_Int32 members;
};
BaseList::BaseList(typelib_InterfaceTypeDescription const * desc)
: members(0)
{
Set allSet;
for (sal_Int32 i = 0; i < desc->nBaseTypes; ++i) {
Set directBaseSet;
sal_Int32 directBaseMembers = 0;
calculate(allSet, i, directBaseSet, &directBaseMembers, desc->ppBaseTypes[i]);
}
}
void BaseList::calculate(
Set& allSet,
sal_Int32 directBaseIndex, Set & directBaseSet,
sal_Int32 * directBaseMembers,
typelib_InterfaceTypeDescription const * desc)
{
for (sal_Int32 i = 0; i < desc->nBaseTypes; ++i) {
calculate(allSet,
directBaseIndex, directBaseSet, directBaseMembers,
desc->ppBaseTypes[i]);
}
if (allSet.insert(desc->aBase.pTypeName).second) {
Entry e;
e.memberOffset = members;
e.directBaseIndex = directBaseIndex;
e.directBaseMemberOffset = *directBaseMembers;
e.base = desc;
list.push_back(e);
OSL_ASSERT(desc->ppAllMembers != nullptr);
members += desc->nMembers;
}
if (directBaseSet.insert(desc->aBase.pTypeName).second) {
OSL_ASSERT(desc->ppAllMembers != nullptr);
*directBaseMembers += desc->nMembers;
}
}
}
extern "C" void SAL_CALL typelib_typedescription_newMIInterface(
typelib_InterfaceTypeDescription ** ppRet,
rtl_uString * pTypeName,
SAL_UNUSED_PARAMETER sal_uInt32, SAL_UNUSED_PARAMETER sal_uInt16,
SAL_UNUSED_PARAMETER sal_uInt16, SAL_UNUSED_PARAMETER sal_uInt32,
SAL_UNUSED_PARAMETER sal_uInt32,
sal_Int32 nBaseInterfaces,
typelib_TypeDescriptionReference ** ppBaseInterfaces,
sal_Int32 nMembers,
typelib_TypeDescriptionReference ** ppMembers ) noexcept
{
if (*ppRet != nullptr) {
typelib_typedescription_release(&(*ppRet)->aBase);
*ppRet = nullptr;
}
typelib_InterfaceTypeDescription * pITD = nullptr;
typelib_typedescription_newEmpty(
reinterpret_cast<typelib_TypeDescription **>(&pITD), typelib_TypeClass_INTERFACE, pTypeName );
pITD->nBaseTypes = nBaseInterfaces;
pITD->ppBaseTypes = new typelib_InterfaceTypeDescription *[nBaseInterfaces];
for (sal_Int32 i = 0; i < nBaseInterfaces; ++i) {
pITD->ppBaseTypes[i] = nullptr;
typelib_typedescriptionreference_getDescription(
reinterpret_cast< typelib_TypeDescription ** >(
&pITD->ppBaseTypes[i]),
ppBaseInterfaces[i]);
if (pITD->ppBaseTypes[i] == nullptr
|| !complete(
reinterpret_cast< typelib_TypeDescription ** >(
&pITD->ppBaseTypes[i]),
false))
{
OSL_ASSERT(false);
return;
}
OSL_ASSERT(pITD->ppBaseTypes[i] != nullptr);
}
if (nBaseInterfaces > 0) {
pITD->pBaseTypeDescription = pITD->ppBaseTypes[0];
}
// set the
pITD->aUik.m_Data1 = 0;
pITD->aUik.m_Data2 = 0;
pITD->aUik.m_Data3 = 0;
pITD->aUik.m_Data4 = 0;
pITD->aUik.m_Data5 = 0;
BaseList aBaseList(pITD);
pITD->nAllMembers = nMembers + aBaseList.getBaseMembers();
pITD->nMembers = nMembers;
if( pITD->nAllMembers )
{
// at minimum one member exist, allocate the memory
pITD->ppAllMembers = new typelib_TypeDescriptionReference *[ pITD->nAllMembers ];
sal_Int32 n = 0;
BaseList::List const & rList = aBaseList.getList();
for (const auto& rEntry : rList)
{
typelib_InterfaceTypeDescription const * pBase = rEntry.base;
typelib_InterfaceTypeDescription const * pDirectBase
= pITD->ppBaseTypes[rEntry.directBaseIndex];
OSL_ASSERT(pBase->ppAllMembers != nullptr);
for (sal_Int32 j = 0; j < pBase->nMembers; ++j) {
typelib_TypeDescriptionReference const * pDirectBaseMember
= pDirectBase->ppAllMembers[rEntry.directBaseMemberOffset + j];
OUString aName = OUString::unacquired(&pDirectBaseMember->pTypeName) +
":@" +
OUString::number(rEntry.directBaseIndex) +
"," +
OUString::number(rEntry.memberOffset + j) +
":" +
OUString::unacquired(&pITD->aBase.pTypeName);
typelib_TypeDescriptionReference * pDerivedMember = nullptr;
typelib_typedescriptionreference_new(
&pDerivedMember, pDirectBaseMember->eTypeClass,
aName.pData);
pITD->ppAllMembers[n++] = pDerivedMember;
}
}
if( nMembers )
{
pITD->ppMembers = pITD->ppAllMembers + aBaseList.getBaseMembers();
}
// add own members
for( sal_Int32 i = 0; i < nMembers; i++ )
{
typelib_typedescriptionreference_acquire( ppMembers[i] );
pITD->ppAllMembers[n++] = ppMembers[i];
}
}
typelib_TypeDescription * pTmp = &pITD->aBase;
static_assert( !TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( typelib_TypeClass_INTERFACE ) );
pTmp->pWeakRef = reinterpret_cast<typelib_TypeDescriptionReference *>(pTmp);
pTmp->nSize = typelib_typedescription_getAlignedUnoSize( pTmp, 0, pTmp->nAlignment );
pTmp->nAlignment = adjustAlignment( pTmp->nAlignment );
pTmp->bComplete = false;
*ppRet = pITD;
}
namespace {
typelib_TypeDescriptionReference ** copyExceptions(
sal_Int32 count, rtl_uString ** typeNames)
{
OSL_ASSERT(count >= 0);
if (count == 0) {
return nullptr;
}
typelib_TypeDescriptionReference ** p
= new typelib_TypeDescriptionReference *[count];
for (sal_Int32 i = 0; i < count; ++i) {
p[i] = nullptr;
typelib_typedescriptionreference_new(
p + i, typelib_TypeClass_EXCEPTION, typeNames[i]);
}
return p;
}
}
extern "C" void SAL_CALL typelib_typedescription_newInterfaceMethod(
typelib_InterfaceMethodTypeDescription ** ppRet,
sal_Int32 nAbsolutePosition,
sal_Bool bOneWay,
rtl_uString * pTypeName,
typelib_TypeClass eReturnTypeClass,
rtl_uString * pReturnTypeName,
sal_Int32 nParams,
typelib_Parameter_Init * pParams,
sal_Int32 nExceptions,
rtl_uString ** ppExceptionNames ) noexcept
{
if (*ppRet != nullptr) {
typelib_typedescription_release(&(*ppRet)->aBase.aBase);
*ppRet = nullptr;
}
sal_Int32 nOffset = rtl_ustr_lastIndexOfChar_WithLength(
pTypeName->buffer, pTypeName->length, ':');
if (nOffset <= 0 || pTypeName->buffer[nOffset - 1] != ':') {
OSL_FAIL("Bad interface method type name");
return;
}
OUString aInterfaceTypeName(pTypeName->buffer, nOffset - 1);
typelib_InterfaceTypeDescription * pInterface = nullptr;
typelib_typedescription_getByName(
reinterpret_cast< typelib_TypeDescription ** >(&pInterface),
aInterfaceTypeName.pData);
if (pInterface == nullptr
|| pInterface->aBase.eTypeClass != typelib_TypeClass_INTERFACE
|| !complete(
reinterpret_cast< typelib_TypeDescription ** >(&pInterface), false))
{
OSL_FAIL("No interface corresponding to interface method");
return;
}
typelib_typedescription_newEmpty(
reinterpret_cast<typelib_TypeDescription **>(ppRet), typelib_TypeClass_INTERFACE_METHOD, pTypeName );
rtl_uString_newFromStr_WithLength( &(*ppRet)->aBase.pMemberName,
pTypeName->buffer + nOffset +1,
pTypeName->length - nOffset -1 );
(*ppRet)->aBase.nPosition = nAbsolutePosition;
(*ppRet)->bOneWay = bOneWay;
typelib_typedescriptionreference_new( &(*ppRet)->pReturnTypeRef, eReturnTypeClass, pReturnTypeName );
(*ppRet)->nParams = nParams;
if( nParams )
{
(*ppRet)->pParams = new typelib_MethodParameter[ nParams ];
for( sal_Int32 i = 0; i < nParams; i++ )
{
// get the name of the parameter
(*ppRet)->pParams[ i ].pName = pParams[i].pParamName;
rtl_uString_acquire( (*ppRet)->pParams[ i ].pName );
(*ppRet)->pParams[ i ].pTypeRef = nullptr;
// get the type name of the parameter and create the weak reference
typelib_typedescriptionreference_new(
&(*ppRet)->pParams[ i ].pTypeRef, pParams[i].eTypeClass, pParams[i].pTypeName );
(*ppRet)->pParams[ i ].bIn = pParams[i].bIn;
(*ppRet)->pParams[ i ].bOut = pParams[i].bOut;
}
}
(*ppRet)->nExceptions = nExceptions;
(*ppRet)->ppExceptions = copyExceptions(nExceptions, ppExceptionNames);
(*ppRet)->pInterface = pInterface;
(*ppRet)->pBaseRef = nullptr;
OSL_ASSERT(
(nAbsolutePosition >= pInterface->nAllMembers - pInterface->nMembers)
&& nAbsolutePosition < pInterface->nAllMembers);
(*ppRet)->nIndex = nAbsolutePosition
- (pInterface->nAllMembers - pInterface->nMembers);
static_assert( TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( typelib_TypeClass_INTERFACE_METHOD ) );
assert(reinterpret_cast<typelib_TypeDescription *>(*ppRet)->pWeakRef == nullptr);
}
extern "C" void SAL_CALL typelib_typedescription_newInterfaceAttribute(
typelib_InterfaceAttributeTypeDescription ** ppRet,
sal_Int32 nAbsolutePosition,
rtl_uString * pTypeName,
typelib_TypeClass eAttributeTypeClass,
rtl_uString * pAttributeTypeName,
sal_Bool bReadOnly ) noexcept
{
typelib_typedescription_newExtendedInterfaceAttribute(
ppRet, nAbsolutePosition, pTypeName, eAttributeTypeClass,
pAttributeTypeName, bReadOnly, 0, nullptr, 0, nullptr);
}
extern "C" void SAL_CALL typelib_typedescription_newExtendedInterfaceAttribute(
typelib_InterfaceAttributeTypeDescription ** ppRet,
sal_Int32 nAbsolutePosition,
rtl_uString * pTypeName,
typelib_TypeClass eAttributeTypeClass,
rtl_uString * pAttributeTypeName,
sal_Bool bReadOnly,
sal_Int32 nGetExceptions, rtl_uString ** ppGetExceptionNames,
sal_Int32 nSetExceptions, rtl_uString ** ppSetExceptionNames ) noexcept
{
if (*ppRet != nullptr) {
typelib_typedescription_release(&(*ppRet)->aBase.aBase);
*ppRet = nullptr;
}
sal_Int32 nOffset = rtl_ustr_lastIndexOfChar_WithLength(
pTypeName->buffer, pTypeName->length, ':');
if (nOffset <= 0 || pTypeName->buffer[nOffset - 1] != ':') {
OSL_FAIL("Bad interface attribute type name");
return;
}
OUString aInterfaceTypeName(pTypeName->buffer, nOffset - 1);
typelib_InterfaceTypeDescription * pInterface = nullptr;
typelib_typedescription_getByName(
reinterpret_cast< typelib_TypeDescription ** >(&pInterface),
aInterfaceTypeName.pData);
if (pInterface == nullptr
|| pInterface->aBase.eTypeClass != typelib_TypeClass_INTERFACE
|| !complete(
reinterpret_cast< typelib_TypeDescription ** >(&pInterface), false))
{
OSL_FAIL("No interface corresponding to interface attribute");
return;
}
typelib_typedescription_newEmpty(
reinterpret_cast<typelib_TypeDescription **>(ppRet), typelib_TypeClass_INTERFACE_ATTRIBUTE, pTypeName );
rtl_uString_newFromStr_WithLength( &(*ppRet)->aBase.pMemberName,
pTypeName->buffer + nOffset +1,
pTypeName->length - nOffset -1 );
(*ppRet)->aBase.nPosition = nAbsolutePosition;
typelib_typedescriptionreference_new( &(*ppRet)->pAttributeTypeRef, eAttributeTypeClass, pAttributeTypeName );
(*ppRet)->bReadOnly = bReadOnly;
(*ppRet)->pInterface = pInterface;
(*ppRet)->pBaseRef = nullptr;
OSL_ASSERT(
(nAbsolutePosition >= pInterface->nAllMembers - pInterface->nMembers)
&& nAbsolutePosition < pInterface->nAllMembers);
(*ppRet)->nIndex = nAbsolutePosition
- (pInterface->nAllMembers - pInterface->nMembers);
(*ppRet)->nGetExceptions = nGetExceptions;
(*ppRet)->ppGetExceptions = copyExceptions(
nGetExceptions, ppGetExceptionNames);
(*ppRet)->nSetExceptions = nSetExceptions;
(*ppRet)->ppSetExceptions = copyExceptions(
nSetExceptions, ppSetExceptionNames);
static_assert( TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( typelib_TypeClass_INTERFACE_ATTRIBUTE ) );
assert(reinterpret_cast<typelib_TypeDescription *>(*ppRet)->pWeakRef == nullptr);
}
extern "C" void SAL_CALL typelib_typedescription_acquire(
typelib_TypeDescription * pTypeDescription ) noexcept
{
osl_atomic_increment( &pTypeDescription->nRefCount );
}
namespace {
void deleteExceptions(
sal_Int32 count, typelib_TypeDescriptionReference ** exceptions)
{
for (sal_Int32 i = 0; i < count; ++i) {
typelib_typedescriptionreference_release(exceptions[i]);
}
delete[] exceptions;
}
}
// frees anything except typelib_TypeDescription base!
static void typelib_typedescription_destructExtendedMembers(
typelib_TypeDescription * pTD )
{
OSL_ASSERT( typelib_TypeClass_TYPEDEF != pTD->eTypeClass );
switch( pTD->eTypeClass )
{
case typelib_TypeClass_SEQUENCE:
if( reinterpret_cast<typelib_IndirectTypeDescription*>(pTD)->pType )
typelib_typedescriptionreference_release( reinterpret_cast<typelib_IndirectTypeDescription*>(pTD)->pType );
break;
case typelib_TypeClass_STRUCT:
delete[] reinterpret_cast< typelib_StructTypeDescription * >(pTD)->
pParameterizedTypes;
[[fallthrough]];
case typelib_TypeClass_EXCEPTION:
{
typelib_CompoundTypeDescription * pCTD = reinterpret_cast<typelib_CompoundTypeDescription*>(pTD);
if( pCTD->pBaseTypeDescription )
typelib_typedescription_release( &pCTD->pBaseTypeDescription->aBase );
sal_Int32 i;
for( i = 0; i < pCTD->nMembers; i++ )
{
typelib_typedescriptionreference_release( pCTD->ppTypeRefs[i] );
}
if (pCTD->ppMemberNames)
{
for ( i = 0; i < pCTD->nMembers; i++ )
{
rtl_uString_release( pCTD->ppMemberNames[i] );
}
delete [] pCTD->ppMemberNames;
}
delete [] pCTD->ppTypeRefs;
delete [] pCTD->pMemberOffsets;
}
break;
case typelib_TypeClass_INTERFACE:
{
typelib_InterfaceTypeDescription * pITD = reinterpret_cast<typelib_InterfaceTypeDescription*>(pTD);
for( sal_Int32 i = 0; i < pITD->nAllMembers; i++ )
{
typelib_typedescriptionreference_release( pITD->ppAllMembers[i] );
}
delete [] pITD->ppAllMembers;
delete [] pITD->pMapMemberIndexToFunctionIndex;
delete [] pITD->pMapFunctionIndexToMemberIndex;
for (sal_Int32 i = 0; i < pITD->nBaseTypes; ++i) {
typelib_typedescription_release(
reinterpret_cast< typelib_TypeDescription * >(
pITD->ppBaseTypes[i]));
}
delete[] pITD->ppBaseTypes;
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
typelib_InterfaceMethodTypeDescription * pIMTD = reinterpret_cast<typelib_InterfaceMethodTypeDescription*>(pTD);
if( pIMTD->pReturnTypeRef )
typelib_typedescriptionreference_release( pIMTD->pReturnTypeRef );
for( sal_Int32 i = 0; i < pIMTD->nParams; i++ )
{
rtl_uString_release( pIMTD->pParams[ i ].pName );
typelib_typedescriptionreference_release( pIMTD->pParams[ i ].pTypeRef );
}
delete [] pIMTD->pParams;
deleteExceptions(pIMTD->nExceptions, pIMTD->ppExceptions);
rtl_uString_release( pIMTD->aBase.pMemberName );
typelib_typedescription_release(&pIMTD->pInterface->aBase);
if (pIMTD->pBaseRef != nullptr) {
typelib_typedescriptionreference_release(pIMTD->pBaseRef);
}
}
break;
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
typelib_InterfaceAttributeTypeDescription * pIATD = reinterpret_cast<typelib_InterfaceAttributeTypeDescription*>(pTD);
deleteExceptions(pIATD->nGetExceptions, pIATD->ppGetExceptions);
deleteExceptions(pIATD->nSetExceptions, pIATD->ppSetExceptions);
if( pIATD->pAttributeTypeRef )
typelib_typedescriptionreference_release( pIATD->pAttributeTypeRef );
if( pIATD->aBase.pMemberName )
rtl_uString_release( pIATD->aBase.pMemberName );
typelib_typedescription_release(&pIATD->pInterface->aBase);
if (pIATD->pBaseRef != nullptr) {
typelib_typedescriptionreference_release(pIATD->pBaseRef);
}
}
break;
case typelib_TypeClass_ENUM:
{
typelib_EnumTypeDescription * pEnum = reinterpret_cast<typelib_EnumTypeDescription *>(pTD);
for ( sal_Int32 nPos = pEnum->nEnumValues; nPos--; )
{
rtl_uString_release( pEnum->ppEnumNames[nPos] );
}
delete [] pEnum->ppEnumNames;
delete [] pEnum->pEnumValues;
}
break;
default:
break;
}
}
extern "C" void SAL_CALL typelib_typedescription_release(
typelib_TypeDescription * pTD ) noexcept
{
sal_Int32 ref = osl_atomic_decrement( &pTD->nRefCount );
OSL_ASSERT(ref >= 0);
if (0 != ref)
return;
TypeDescriptor_Init_Impl &rInit = Init();
if( TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( pTD->eTypeClass ) )
{
if( pTD->pWeakRef )
{
{
MutexGuard aGuard( rInit.maMutex );
// remove this description from the weak reference
pTD->pWeakRef->pType = nullptr;
}
typelib_typedescriptionreference_release( pTD->pWeakRef );
}
}
else
{
// this description is a reference too, so remove it from the hash table
MutexGuard aGuard( rInit.maMutex );
WeakMap_Impl::iterator aIt = rInit.maWeakMap.find( pTD->pTypeName->buffer );
if( aIt != rInit.maWeakMap.end() && static_cast<void *>((*aIt).second) == static_cast<void *>(pTD) )
{
// remove only if it contains the same object
rInit.maWeakMap.erase( aIt );
}
}
typelib_typedescription_destructExtendedMembers( pTD );
rtl_uString_release( pTD->pTypeName );
#if OSL_DEBUG_LEVEL > 0
switch( pTD->eTypeClass )
{
case typelib_TypeClass_SEQUENCE:
osl_atomic_decrement( &rInit.nIndirectTypeDescriptionCount );
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
osl_atomic_decrement( &rInit.nCompoundTypeDescriptionCount );
break;
case typelib_TypeClass_INTERFACE:
osl_atomic_decrement( &rInit.nInterfaceTypeDescriptionCount );
break;
case typelib_TypeClass_INTERFACE_METHOD:
osl_atomic_decrement( &rInit.nInterfaceMethodTypeDescriptionCount );
break;
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
osl_atomic_decrement( &rInit.nInterfaceAttributeTypeDescriptionCount );
break;
case typelib_TypeClass_ENUM:
osl_atomic_decrement( &rInit.nEnumTypeDescriptionCount );
break;
default:
osl_atomic_decrement( &rInit.nTypeDescriptionCount );
}
#endif
freeTypeDescription(pTD);
}
extern "C" void SAL_CALL typelib_typedescription_register(
typelib_TypeDescription ** ppNewDescription ) noexcept
{
// connect the description with the weak reference
TypeDescriptor_Init_Impl &rInit = Init();
ClearableMutexGuard aGuard( rInit.maMutex );
typelib_TypeDescriptionReference * pTDR = nullptr;
typelib_typedescriptionreference_getByName( &pTDR, (*ppNewDescription)->pTypeName );
OSL_ASSERT( (*ppNewDescription)->pWeakRef || TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( (*ppNewDescription)->eTypeClass ) );
if( pTDR )
{
OSL_ASSERT( (*ppNewDescription)->eTypeClass == pTDR->eTypeClass );
if( pTDR->pType )
{
if (TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( pTDR->eTypeClass ))
{
// pRef->pType->pWeakRef == 0 means that the description is empty
if (pTDR->pType->pWeakRef)
{
if (osl_atomic_increment( &pTDR->pType->nRefCount ) > 1)
{
// The reference is incremented. The object cannot be destroyed.
// Release the guard at the earliest point.
aGuard.clear();
::typelib_typedescription_release( *ppNewDescription );
*ppNewDescription = pTDR->pType;
::typelib_typedescriptionreference_release( pTDR );
return;
}
// destruction of this type in progress (another thread!)
(void)osl_atomic_decrement( &pTDR->pType->nRefCount );
}
// take new descr
pTDR->pType = *ppNewDescription;
OSL_ASSERT( ! (*ppNewDescription)->pWeakRef );
(*ppNewDescription)->pWeakRef = pTDR;
return;
}
// !reallyWeak
if ((static_cast<void *>(pTDR) != static_cast<void *>(*ppNewDescription)) && // if different
(!pTDR->pType->pWeakRef || // uninit: ref data only set
// new one is complete:
(!pTDR->pType->bComplete && (*ppNewDescription)->bComplete) ||
// new one may be partly initialized interface (except of tables):
(typelib_TypeClass_INTERFACE == pTDR->pType->eTypeClass &&
!reinterpret_cast<typelib_InterfaceTypeDescription *>(pTDR->pType)->ppAllMembers &&
(*reinterpret_cast<typelib_InterfaceTypeDescription **>(ppNewDescription))->ppAllMembers)))
{
// uninitialized or incomplete
if (pTDR->pType->pWeakRef) // if init
{
switch (pTDR->pType->eTypeClass) {
case typelib_TypeClass_ENUM:
{
auto const src = reinterpret_cast<typelib_EnumTypeDescription *>(
*ppNewDescription);
auto const dst = reinterpret_cast<typelib_EnumTypeDescription *>(
pTDR->pType);
assert(dst->nEnumValues == 0);
assert(dst->ppEnumNames == nullptr);
assert(dst->pEnumValues == nullptr);
std::swap(src->nEnumValues, dst->nEnumValues);
std::swap(src->ppEnumNames, dst->ppEnumNames);
std::swap(src->pEnumValues, dst->pEnumValues);
break;
}
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
auto const src = reinterpret_cast<typelib_CompoundTypeDescription *>(
*ppNewDescription);
auto const dst = reinterpret_cast<typelib_CompoundTypeDescription *>(
pTDR->pType);
assert(
(dst->pBaseTypeDescription == nullptr)
== (src->pBaseTypeDescription == nullptr));
assert(dst->nMembers == src->nMembers);
assert((dst->pMemberOffsets == nullptr) == (dst->nMembers == 0));
assert((dst->ppTypeRefs == nullptr) == (dst->nMembers == 0));
assert(dst->ppMemberNames == nullptr);
assert(
pTDR->pType->eTypeClass != typelib_TypeClass_STRUCT
|| ((reinterpret_cast<typelib_StructTypeDescription *>(
dst)->pParameterizedTypes
== nullptr)
== (reinterpret_cast<typelib_StructTypeDescription *>(
src)->pParameterizedTypes
== nullptr)));
std::swap(src->ppMemberNames, dst->ppMemberNames);
break;
}
case typelib_TypeClass_INTERFACE:
{
auto const src = reinterpret_cast<typelib_InterfaceTypeDescription *>(
*ppNewDescription);
auto const dst = reinterpret_cast<typelib_InterfaceTypeDescription *>(
pTDR->pType);
assert(
(dst->pBaseTypeDescription == nullptr)
== (src->pBaseTypeDescription == nullptr));
assert(dst->nMembers == 0);
assert(dst->ppMembers == nullptr);
assert(dst->nAllMembers == 0);
assert(dst->ppAllMembers == nullptr);
assert(dst->pMapMemberIndexToFunctionIndex == nullptr);
assert(dst->nMapFunctionIndexToMemberIndex == 0);
assert(dst->pMapFunctionIndexToMemberIndex == nullptr);
assert(dst->nBaseTypes == src->nBaseTypes);
assert((dst->ppBaseTypes == nullptr) == (src->ppBaseTypes == nullptr));
std::swap(src->nMembers, dst->nMembers);
std::swap(src->ppMembers, dst->ppMembers);
std::swap(src->nAllMembers, dst->nAllMembers);
std::swap(src->ppAllMembers, dst->ppAllMembers);
std::swap(
src->pMapMemberIndexToFunctionIndex,
dst->pMapMemberIndexToFunctionIndex);
std::swap(
src->nMapFunctionIndexToMemberIndex,
dst->nMapFunctionIndexToMemberIndex);
std::swap(
src->pMapFunctionIndexToMemberIndex,
dst->pMapFunctionIndexToMemberIndex);
break;
}
default:
assert(false); // this cannot happen
}
}
else
{
// pTDR->pType->pWeakRef == 0 means that the description is empty
// description is not weak and the not the same
sal_Int32 nSize = getDescriptionSize( (*ppNewDescription)->eTypeClass );
// copy all specific data for the descriptions
memcpy(
pTDR->pType +1,
*ppNewDescription +1,
nSize - sizeof(typelib_TypeDescription) );
memset(
*ppNewDescription +1,
0,
nSize - sizeof( typelib_TypeDescription ) );
}
pTDR->pType->bComplete = (*ppNewDescription)->bComplete;
pTDR->pType->nSize = (*ppNewDescription)->nSize;
pTDR->pType->nAlignment = (*ppNewDescription)->nAlignment;
if( pTDR->pType->bOnDemand && !(*ppNewDescription)->bOnDemand )
{
// switch from OnDemand to !OnDemand, so the description must be acquired
typelib_typedescription_acquire( pTDR->pType );
}
else if( !pTDR->pType->bOnDemand && (*ppNewDescription)->bOnDemand )
{
// switch from !OnDemand to OnDemand, so the description must be released
assert(pTDR->pType->nRefCount > 1);
// coverity[freed_arg] - pType's nRefCount is > 1 here
typelib_typedescription_release( pTDR->pType );
}
pTDR->pType->bOnDemand = (*ppNewDescription)->bOnDemand;
// initialized
pTDR->pType->pWeakRef = pTDR;
}
typelib_typedescription_release( *ppNewDescription );
// pTDR was acquired by getByName(), so it must not be acquired again
*ppNewDescription = pTDR->pType;
return;
}
}
else if( TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( (*ppNewDescription)->eTypeClass) )
{
typelib_typedescriptionreference_new(
&pTDR, (*ppNewDescription)->eTypeClass, (*ppNewDescription)->pTypeName );
}
else
{
pTDR = reinterpret_cast<typelib_TypeDescriptionReference *>(*ppNewDescription);
// description is the weak itself, so register it
rInit.maWeakMap[pTDR->pTypeName->buffer] = pTDR;
OSL_ASSERT( static_cast<void *>(*ppNewDescription) == static_cast<void *>(pTDR) );
}
// By default this reference is not really weak. The reference hold the description
// and the description hold the reference.
if( !(*ppNewDescription)->bOnDemand )
{
// nor OnDemand so the description must be acquired if registered
typelib_typedescription_acquire( *ppNewDescription );
}
pTDR->pType = *ppNewDescription;
(*ppNewDescription)->pWeakRef = pTDR;
OSL_ASSERT( rtl_ustr_compare( pTDR->pTypeName->buffer, (*ppNewDescription)->pTypeName->buffer ) == 0 );
OSL_ASSERT( pTDR->eTypeClass == (*ppNewDescription)->eTypeClass );
}
static bool type_equals(
typelib_TypeDescriptionReference const * p1, typelib_TypeDescriptionReference const * p2 )
{
return (p1 == p2 ||
(p1->eTypeClass == p2->eTypeClass &&
p1->pTypeName->length == p2->pTypeName->length &&
rtl_ustr_compare( p1->pTypeName->buffer, p2->pTypeName->buffer ) == 0));
}
extern "C" sal_Bool SAL_CALL typelib_typedescription_equals(
const typelib_TypeDescription * p1, const typelib_TypeDescription * p2 ) noexcept
{
return type_equals(
reinterpret_cast<typelib_TypeDescriptionReference const *>(p1), reinterpret_cast<typelib_TypeDescriptionReference const *>(p2) );
}
extern "C" sal_Int32 typelib_typedescription_getAlignedUnoSize(
const typelib_TypeDescription * pTypeDescription,
sal_Int32 nOffset, sal_Int32 & rMaxIntegralTypeSize ) noexcept
{
sal_Int32 nSize;
if( pTypeDescription->nSize )
{
// size and alignment are set
rMaxIntegralTypeSize = pTypeDescription->nAlignment;
nSize = pTypeDescription->nSize;
}
else
{
nSize = 0;
rMaxIntegralTypeSize = 1;
OSL_ASSERT( typelib_TypeClass_TYPEDEF != pTypeDescription->eTypeClass );
switch( pTypeDescription->eTypeClass )
{
case typelib_TypeClass_INTERFACE:
// FEATURE_INTERFACE
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( void * ));
break;
case typelib_TypeClass_ENUM:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( typelib_TypeClass ));
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
// FEATURE_EMPTYCLASS
{
typelib_CompoundTypeDescription const * pTmp = reinterpret_cast<typelib_CompoundTypeDescription const *>(pTypeDescription);
sal_Int32 nStructSize = 0;
if( pTmp->pBaseTypeDescription )
{
// inherit structs extends the base struct.
nStructSize = pTmp->pBaseTypeDescription->aBase.nSize;
rMaxIntegralTypeSize = pTmp->pBaseTypeDescription->aBase.nAlignment;
}
for( sal_Int32 i = 0; i < pTmp->nMembers; i++ )
{
typelib_TypeDescription * pMemberType = nullptr;
typelib_TypeDescriptionReference * pMemberRef = pTmp->ppTypeRefs[i];
sal_Int32 nMaxIntegral;
if (pMemberRef->eTypeClass == typelib_TypeClass_INTERFACE
|| pMemberRef->eTypeClass == typelib_TypeClass_SEQUENCE)
{
nMaxIntegral = sal_Int32(sizeof(void *));
nStructSize = newAlignedSize( nStructSize, nMaxIntegral, nMaxIntegral );
}
else
{
TYPELIB_DANGER_GET( &pMemberType, pMemberRef );
nStructSize = typelib_typedescription_getAlignedUnoSize(
pMemberType, nStructSize, nMaxIntegral );
TYPELIB_DANGER_RELEASE( pMemberType );
}
if( nMaxIntegral > rMaxIntegralTypeSize )
rMaxIntegralTypeSize = nMaxIntegral;
}
#ifdef __m68k__
// Anything that is at least 16 bits wide is aligned on a 16-bit
// boundary on the m68k default abi
sal_Int32 nMaxAlign = std::min(rMaxIntegralTypeSize, sal_Int32( 2 ));
nStructSize = (nStructSize + nMaxAlign -1) / nMaxAlign * nMaxAlign;
#else
// Example: A { double; int; } structure has a size of 16 instead of 10. The
// compiler must follow this rule if it is possible to access members in arrays through:
// (Element *)((char *)pArray + sizeof( Element ) * ElementPos)
nStructSize = (nStructSize + rMaxIntegralTypeSize -1)
/ rMaxIntegralTypeSize * rMaxIntegralTypeSize;
#endif
nSize += nStructSize;
}
break;
case typelib_TypeClass_SEQUENCE:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( void * ));
break;
case typelib_TypeClass_ANY:
// FEATURE_ANY
nSize = sal_Int32(sizeof( uno_Any ));
rMaxIntegralTypeSize = sal_Int32(sizeof( void * ));
break;
case typelib_TypeClass_TYPE:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( typelib_TypeDescriptionReference * ));
break;
case typelib_TypeClass_BOOLEAN:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( sal_Bool ));
break;
case typelib_TypeClass_CHAR:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( sal_Unicode ));
break;
case typelib_TypeClass_STRING:
// FEATURE_STRING
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( rtl_uString * ));
break;
case typelib_TypeClass_FLOAT:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( float ));
break;
case typelib_TypeClass_DOUBLE:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( double ));
break;
case typelib_TypeClass_BYTE:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( sal_Int8 ));
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( sal_Int16 ));
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( sal_Int32 ));
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
nSize = rMaxIntegralTypeSize = sal_Int32(sizeof( sal_Int64 ));
break;
case typelib_TypeClass_UNKNOWN:
case typelib_TypeClass_SERVICE:
case typelib_TypeClass_MODULE:
default:
OSL_FAIL( "not convertible type" );
};
}
return newAlignedSize( nOffset, nSize, rMaxIntegralTypeSize );
}
namespace {
typelib_TypeDescriptionReference ** copyExceptions(
sal_Int32 count, typelib_TypeDescriptionReference ** source)
{
typelib_TypeDescriptionReference ** p
= new typelib_TypeDescriptionReference *[count];
for (sal_Int32 i = 0; i < count; ++i) {
p[i] = source[i];
typelib_typedescriptionreference_acquire(p[i]);
}
return p;
}
bool createDerivedInterfaceMemberDescription(
typelib_TypeDescription ** result, OUString const & name,
typelib_TypeDescriptionReference * baseRef,
typelib_TypeDescription const * base, typelib_TypeDescription * interface,
sal_Int32 index, sal_Int32 position)
{
if (!baseRef || !base || !interface)
return false;
switch (base->eTypeClass) {
case typelib_TypeClass_INTERFACE_METHOD:
{
typelib_typedescription_newEmpty(
result, typelib_TypeClass_INTERFACE_METHOD, name.pData);
typelib_InterfaceMethodTypeDescription const * baseMethod
= reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(base);
typelib_InterfaceMethodTypeDescription * newMethod
= reinterpret_cast<
typelib_InterfaceMethodTypeDescription * >(*result);
newMethod->aBase.nPosition = position;
newMethod->aBase.pMemberName
= baseMethod->aBase.pMemberName;
rtl_uString_acquire(
newMethod->aBase.pMemberName);
newMethod->pReturnTypeRef = baseMethod->pReturnTypeRef;
typelib_typedescriptionreference_acquire(
newMethod->pReturnTypeRef);
newMethod->nParams = baseMethod->nParams;
newMethod->pParams = new typelib_MethodParameter[
newMethod->nParams];
for (sal_Int32 i = 0; i < newMethod->nParams; ++i) {
newMethod->pParams[i].pName
= baseMethod->pParams[i].pName;
rtl_uString_acquire(
newMethod->pParams[i].pName);
newMethod->pParams[i].pTypeRef
= baseMethod->pParams[i].pTypeRef;
typelib_typedescriptionreference_acquire(
newMethod->pParams[i].pTypeRef);
newMethod->pParams[i].bIn = baseMethod->pParams[i].bIn;
newMethod->pParams[i].bOut = baseMethod->pParams[i].bOut;
}
newMethod->nExceptions = baseMethod->nExceptions;
newMethod->ppExceptions = copyExceptions(
baseMethod->nExceptions, baseMethod->ppExceptions);
newMethod->bOneWay = baseMethod->bOneWay;
newMethod->pInterface
= reinterpret_cast< typelib_InterfaceTypeDescription * >(
interface);
newMethod->pBaseRef = baseRef;
newMethod->nIndex = index;
return true;
}
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
typelib_typedescription_newEmpty(
result, typelib_TypeClass_INTERFACE_ATTRIBUTE, name.pData);
typelib_InterfaceAttributeTypeDescription const * baseAttribute
= reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(base);
typelib_InterfaceAttributeTypeDescription * newAttribute
= reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(*result);
newAttribute->aBase.nPosition = position;
newAttribute->aBase.pMemberName
= baseAttribute->aBase.pMemberName;
rtl_uString_acquire(newAttribute->aBase.pMemberName);
newAttribute->bReadOnly = baseAttribute->bReadOnly;
newAttribute->pAttributeTypeRef
= baseAttribute->pAttributeTypeRef;
typelib_typedescriptionreference_acquire(newAttribute->pAttributeTypeRef);
newAttribute->pInterface
= reinterpret_cast< typelib_InterfaceTypeDescription * >(
interface);
newAttribute->pBaseRef = baseRef;
newAttribute->nIndex = index;
newAttribute->nGetExceptions = baseAttribute->nGetExceptions;
newAttribute->ppGetExceptions = copyExceptions(
baseAttribute->nGetExceptions,
baseAttribute->ppGetExceptions);
newAttribute->nSetExceptions = baseAttribute->nSetExceptions;
newAttribute->ppSetExceptions = copyExceptions(
baseAttribute->nSetExceptions,
baseAttribute->ppSetExceptions);
return true;
}
default:
break;
}
return false;
}
}
extern "C" void SAL_CALL typelib_typedescription_getByName(
typelib_TypeDescription ** ppRet, rtl_uString * pName ) noexcept
{
if( *ppRet )
{
typelib_typedescription_release( *ppRet );
*ppRet = nullptr;
}
static bool bInited = false;
TypeDescriptor_Init_Impl &rInit = Init();
if( !bInited )
{
// guard against multi thread access
MutexGuard aGuard( rInit.maMutex );
if( !bInited )
{
// avoid recursion during the next ...new calls
bInited = true;
typelib_TypeDescription * pType = nullptr;
typelib_typedescription_new( &pType, typelib_TypeClass_TYPE, u"type"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_VOID, u"void"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_BOOLEAN, u"boolean"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_CHAR, u"char"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_BYTE, u"byte"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_STRING, u"string"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_SHORT, u"short"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_UNSIGNED_SHORT, u"unsigned short"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_LONG, u"long"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_UNSIGNED_LONG, u"unsigned long"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_HYPER, u"hyper"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_UNSIGNED_HYPER, u"unsigned hyper"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_FLOAT, u"float"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_DOUBLE, u"double"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_new( &pType, typelib_TypeClass_ANY, u"any"_ustr.pData, nullptr, 0, nullptr );
typelib_typedescription_register( &pType );
typelib_typedescription_release( pType );
}
}
typelib_TypeDescriptionReference * pTDR = nullptr;
typelib_typedescriptionreference_getByName( &pTDR, pName );
if( pTDR )
{
{
// guard against multi thread access
MutexGuard aGuard( rInit.maMutex );
// pTDR->pType->pWeakRef == 0 means that the description is empty
if( pTDR->pType && pTDR->pType->pWeakRef )
{
typelib_typedescription_acquire( pTDR->pType );
*ppRet = pTDR->pType;
}
}
typelib_typedescriptionreference_release( pTDR );
}
if (nullptr != *ppRet)
return;
// check for sequence
OUString const & name = OUString::unacquired( &pName );
if (2 < name.getLength() && '[' == name[ 0 ])
{
OUString element_name( name.copy( 2 ) );
typelib_TypeDescription * element_td = nullptr;
typelib_typedescription_getByName( &element_td, element_name.pData );
if (nullptr != element_td)
{
typelib_typedescription_new(
ppRet, typelib_TypeClass_SEQUENCE, pName, element_td->pWeakRef, 0, nullptr );
// register?
typelib_typedescription_release( element_td );
}
}
if (nullptr == *ppRet)
{
// Check for derived interface member type:
sal_Int32 i1 = name.lastIndexOf(":@");
if (i1 >= 0) {
sal_Int32 i2 = i1 + RTL_CONSTASCII_LENGTH(":@");
sal_Int32 i3 = name.indexOf(',', i2);
if (i3 >= 0) {
sal_Int32 i4 = name.indexOf(':', i3);
if (i4 >= 0) {
typelib_TypeDescriptionReference * pBaseRef = nullptr;
typelib_TypeDescription * pBase = nullptr;
typelib_TypeDescription * pInterface = nullptr;
typelib_typedescriptionreference_getByName(
&pBaseRef, name.copy(0, i1).pData);
if (pBaseRef != nullptr) {
typelib_typedescriptionreference_getDescription(
&pBase, pBaseRef);
}
typelib_typedescription_getByName(
&pInterface, name.copy(i4 + 1).pData);
if (!createDerivedInterfaceMemberDescription(
ppRet, name, pBaseRef, pBase, pInterface,
o3tl::toInt32(name.subView(i2, i3 - i2)),
o3tl::toInt32(name.subView(i3 + 1, i4 - i3 - 1))))
{
if (pInterface != nullptr) {
typelib_typedescription_release(pInterface);
}
if (pBase != nullptr) {
typelib_typedescription_release(pBase);
}
if (pBaseRef != nullptr) {
typelib_typedescriptionreference_release(
pBaseRef);
}
}
}
}
}
}
if (nullptr == *ppRet)
{
// on demand access
rInit.callChain( ppRet, pName );
}
if( !(*ppRet) )
return;
// typedescription found
if (typelib_TypeClass_TYPEDEF == (*ppRet)->eTypeClass)
{
typelib_TypeDescription * pTD = nullptr;
typelib_typedescriptionreference_getDescription(
&pTD, reinterpret_cast<typelib_IndirectTypeDescription *>(*ppRet)->pType );
typelib_typedescription_release( *ppRet );
*ppRet = pTD;
}
else
{
// set to on demand
(*ppRet)->bOnDemand = true;
// The type description is hold by the reference until
// on demand is activated.
typelib_typedescription_register( ppRet );
// insert into the cache
MutexGuard aGuard( rInit.maMutex );
if( rInit.maCache.size() >= nCacheSize )
{
typelib_typedescription_release( rInit.maCache.front() );
rInit.maCache.pop_front();
}
// descriptions in the cache must be acquired!
typelib_typedescription_acquire( *ppRet );
rInit.maCache.push_back( *ppRet );
}
}
extern "C" void SAL_CALL typelib_typedescriptionreference_newByAsciiName(
typelib_TypeDescriptionReference ** ppTDR,
typelib_TypeClass eTypeClass,
const char * pTypeName ) noexcept
{
OUString aTypeName( OUString::createFromAscii( pTypeName ) );
typelib_typedescriptionreference_new( ppTDR, eTypeClass, aTypeName.pData );
}
extern "C" void SAL_CALL typelib_typedescriptionreference_new(
typelib_TypeDescriptionReference ** ppTDR,
typelib_TypeClass eTypeClass, rtl_uString * pTypeName ) noexcept
{
TypeDescriptor_Init_Impl &rInit = Init();
if( eTypeClass == typelib_TypeClass_TYPEDEF )
{
// on demand access
typelib_TypeDescription * pRet = nullptr;
rInit.callChain( &pRet, pTypeName );
if( pRet )
{
// typedescription found
if (typelib_TypeClass_TYPEDEF == pRet->eTypeClass)
{
typelib_typedescriptionreference_acquire(
reinterpret_cast<typelib_IndirectTypeDescription *>(pRet)->pType );
if (*ppTDR)
typelib_typedescriptionreference_release( *ppTDR );
*ppTDR = reinterpret_cast<typelib_IndirectTypeDescription *>(pRet)->pType;
typelib_typedescription_release( pRet );
}
else
{
// set to on demand
pRet->bOnDemand = true;
// The type description is hold by the reference until
// on demand is activated.
typelib_typedescription_register( &pRet );
// insert into the cache
MutexGuard aGuard( rInit.maMutex );
if( rInit.maCache.size() >= nCacheSize )
{
typelib_typedescription_release( rInit.maCache.front() );
rInit.maCache.pop_front();
}
rInit.maCache.push_back( pRet );
// pRet kept acquired for cache
typelib_typedescriptionreference_acquire( pRet->pWeakRef );
if (*ppTDR)
typelib_typedescriptionreference_release( *ppTDR );
*ppTDR = pRet->pWeakRef;
}
}
else if (*ppTDR)
{
SAL_INFO("cppu.typelib", "typedef not found : " << pTypeName);
typelib_typedescriptionreference_release( *ppTDR );
*ppTDR = nullptr;
}
return;
}
MutexGuard aGuard( rInit.maMutex );
typelib_typedescriptionreference_getByName( ppTDR, pTypeName );
if( *ppTDR )
return;
if( TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( eTypeClass ) )
{
typelib_TypeDescriptionReference * pTDR = new typelib_TypeDescriptionReference;
#if OSL_DEBUG_LEVEL > 0
osl_atomic_increment( &rInit.nTypeDescriptionReferenceCount );
#endif
pTDR->nRefCount = 1;
pTDR->nStaticRefCount = 0;
pTDR->eTypeClass = eTypeClass;
pTDR->pUniqueIdentifier = nullptr;
pTDR->pReserved = nullptr;
pTDR->pTypeName = pTypeName;
rtl_uString_acquire( pTDR->pTypeName );
pTDR->pType = nullptr;
*ppTDR = pTDR;
}
else
{
typelib_typedescription_newEmpty( reinterpret_cast<typelib_TypeDescription ** >(ppTDR), eTypeClass, pTypeName );
// description will be registered but not acquired
(*reinterpret_cast<typelib_TypeDescription **>(ppTDR))->bOnDemand = true;
(*reinterpret_cast<typelib_TypeDescription **>(ppTDR))->bComplete = false;
}
// Heavy hack, the const sal_Unicode * is hold by the typedescription reference
// not registered
rInit.maWeakMap[ (*ppTDR)->pTypeName->buffer ] = *ppTDR;
}
extern "C" void SAL_CALL typelib_typedescriptionreference_acquire(
typelib_TypeDescriptionReference * pRef ) noexcept
{
osl_atomic_increment( &pRef->nRefCount );
}
extern "C" void SAL_CALL typelib_typedescriptionreference_release(
typelib_TypeDescriptionReference * pRef ) noexcept
{
// Is it a type description?
if( TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( pRef->eTypeClass ) )
{
if( ! osl_atomic_decrement( &pRef->nRefCount ) )
{
TypeDescriptor_Init_Impl &rInit = Init();
MutexGuard aGuard( rInit.maMutex );
WeakMap_Impl::iterator aIt = rInit.maWeakMap.find( pRef->pTypeName->buffer );
if( aIt != rInit.maWeakMap.end() && (*aIt).second == pRef )
{
// remove only if it contains the same object
rInit.maWeakMap.erase( aIt );
}
rtl_uString_release( pRef->pTypeName );
OSL_ASSERT( pRef->pType == nullptr );
#if OSL_DEBUG_LEVEL > 0
osl_atomic_decrement( &rInit.nTypeDescriptionReferenceCount );
#endif
delete pRef;
}
}
else
{
typelib_typedescription_release( reinterpret_cast<typelib_TypeDescription *>(pRef) );
}
}
extern "C" void SAL_CALL typelib_typedescriptionreference_getDescription(
typelib_TypeDescription ** ppRet, typelib_TypeDescriptionReference * pRef ) noexcept
{
if( *ppRet )
{
typelib_typedescription_release( *ppRet );
*ppRet = nullptr;
}
if( !TYPELIB_TYPEDESCRIPTIONREFERENCE_ISREALLYWEAK( pRef->eTypeClass ) && pRef->pType && pRef->pType->pWeakRef )
{
// reference is a description and initialized
osl_atomic_increment( &reinterpret_cast<typelib_TypeDescription *>(pRef)->nRefCount );
*ppRet = reinterpret_cast<typelib_TypeDescription *>(pRef);
return;
}
{
MutexGuard aGuard( Init().maMutex );
// pRef->pType->pWeakRef == 0 means that the description is empty
if( pRef->pType && pRef->pType->pWeakRef )
{
sal_Int32 n = osl_atomic_increment( &pRef->pType->nRefCount );
if( n > 1 )
{
// The reference is incremented. The object cannot be destroyed.
// Release the guard at the earliest point.
*ppRet = pRef->pType;
return;
}
(void)osl_atomic_decrement( &pRef->pType->nRefCount );
// destruction of this type in progress (another thread!)
// no access through this weak reference
pRef->pType = nullptr;
}
}
typelib_typedescription_getByName( ppRet, pRef->pTypeName );
OSL_ASSERT( !*ppRet || rtl_ustr_compare( pRef->pTypeName->buffer, (*ppRet)->pTypeName->buffer ) == 0 );
OSL_ASSERT( !*ppRet || pRef->eTypeClass == (*ppRet)->eTypeClass );
OSL_ASSERT( !*ppRet || pRef == (*ppRet)->pWeakRef );
pRef->pType = *ppRet;
}
extern "C" void typelib_typedescriptionreference_getByName(
typelib_TypeDescriptionReference ** ppRet, rtl_uString const * pName ) noexcept
{
if( *ppRet )
{
typelib_typedescriptionreference_release( *ppRet );
*ppRet = nullptr;
}
TypeDescriptor_Init_Impl &rInit = Init();
MutexGuard aGuard( rInit.maMutex );
WeakMap_Impl::const_iterator aIt = rInit.maWeakMap.find( pName->buffer );
if( aIt == rInit.maWeakMap.end() )
return;
sal_Int32 n = osl_atomic_increment( &(*aIt).second->nRefCount );
if( n > 1 )
{
// The reference is incremented. The object cannot be destroyed.
// Release the guard at the earliest point.
*ppRet = (*aIt).second;
}
else
{
// destruction of this type in progress (another thread!)
// no access through this weak reference
(void)osl_atomic_decrement( &(*aIt).second->nRefCount );
}
}
extern "C" sal_Bool SAL_CALL typelib_typedescriptionreference_equals(
const typelib_TypeDescriptionReference * p1,
const typelib_TypeDescriptionReference * p2 ) noexcept
{
return (p1 == p2 ||
(p1->eTypeClass == p2->eTypeClass &&
p1->pTypeName->length == p2->pTypeName->length &&
rtl_ustr_compare( p1->pTypeName->buffer, p2->pTypeName->buffer ) == 0));
}
extern "C" void SAL_CALL typelib_typedescriptionreference_assign(
typelib_TypeDescriptionReference ** ppDest,
typelib_TypeDescriptionReference * pSource ) noexcept
{
if (*ppDest != pSource)
{
::typelib_typedescriptionreference_acquire( pSource );
::typelib_typedescriptionreference_release( *ppDest );
*ppDest = pSource;
}
}
extern "C" void SAL_CALL typelib_setCacheSize( sal_Int32 ) noexcept
{
}
const bool s_aAssignableFromTab[11][11] =
{
/* from CH, BO, BY, SH, US, LO, UL, HY, UH, FL, DO */
/* TypeClass_CHAR */ { true, false, false, false, false, false, false, false, false, false, false },
/* TypeClass_BOOLEAN */ { false, true, false, false, false, false, false, false, false, false, false },
/* TypeClass_BYTE */ { false, false, true, false, false, false, false, false, false, false, false },
/* TypeClass_SHORT */ { false, false, true, true, true, false, false, false, false, false, false },
/* TypeClass_UNSIGNED_SHORT */ { false, false, true, true, true, false, false, false, false, false, false },
/* TypeClass_LONG */ { false, false, true, true, true, true, true, false, false, false, false },
/* TypeClass_UNSIGNED_LONG */ { false, false, true, true, true, true, true, false, false, false, false },
/* TypeClass_HYPER */ { false, false, true, true, true, true, true, true, true, false, false },
/* TypeClass_UNSIGNED_HYPER */ { false, false, true, true, true, true, true, true, true, false, false },
/* TypeClass_FLOAT */ { false, false, true, true, true, false, false, false, false, true, false },
/* TypeClass_DOUBLE */ { false, false, true, true, true, true, true, false, false, true, true }
};
extern "C" sal_Bool SAL_CALL typelib_typedescriptionreference_isAssignableFrom(
typelib_TypeDescriptionReference * pAssignable,
typelib_TypeDescriptionReference * pFrom ) noexcept
{
if (!pAssignable || !pFrom)
return false;
typelib_TypeClass eAssignable = pAssignable->eTypeClass;
typelib_TypeClass eFrom = pFrom->eTypeClass;
if (eAssignable == typelib_TypeClass_ANY) // anything can be assigned to an any .)
return true;
if (eAssignable == eFrom)
{
if (type_equals( pAssignable, pFrom )) // first shot
{
return true;
}
switch (eAssignable)
{
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
typelib_TypeDescription * pFromDescr = nullptr;
TYPELIB_DANGER_GET( &pFromDescr, pFrom );
if (!reinterpret_cast<typelib_CompoundTypeDescription *>(pFromDescr)->pBaseTypeDescription)
{
TYPELIB_DANGER_RELEASE( pFromDescr );
return false;
}
bool bRet = typelib_typedescriptionreference_isAssignableFrom(
pAssignable,
reinterpret_cast<typelib_CompoundTypeDescription *>(pFromDescr)->pBaseTypeDescription->aBase.pWeakRef );
TYPELIB_DANGER_RELEASE( pFromDescr );
return bRet;
}
case typelib_TypeClass_INTERFACE:
{
typelib_TypeDescription * pFromDescr = nullptr;
TYPELIB_DANGER_GET( &pFromDescr, pFrom );
typelib_InterfaceTypeDescription * pFromIfc
= reinterpret_cast<
typelib_InterfaceTypeDescription * >(pFromDescr);
bool bRet = false;
for (sal_Int32 i = 0; i < pFromIfc->nBaseTypes; ++i) {
if (typelib_typedescriptionreference_isAssignableFrom(
pAssignable,
pFromIfc->ppBaseTypes[i]->aBase.pWeakRef))
{
bRet = true;
break;
}
}
TYPELIB_DANGER_RELEASE( pFromDescr );
return bRet;
}
default:
{
return false;
}
}
}
return (eAssignable >= typelib_TypeClass_CHAR && eAssignable <= typelib_TypeClass_DOUBLE &&
eFrom >= typelib_TypeClass_CHAR && eFrom <= typelib_TypeClass_DOUBLE &&
s_aAssignableFromTab[eAssignable-1][eFrom-1]);
}
extern "C" sal_Bool SAL_CALL typelib_typedescription_isAssignableFrom(
typelib_TypeDescription * pAssignable,
typelib_TypeDescription * pFrom ) noexcept
{
return typelib_typedescriptionreference_isAssignableFrom(
pAssignable->pWeakRef, pFrom->pWeakRef );
}
extern "C" sal_Bool SAL_CALL typelib_typedescription_complete(
typelib_TypeDescription ** ppTypeDescr ) noexcept
{
return complete(ppTypeDescr, true);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
↑ V781 The value of the 'nBaseInterfaces' variable is checked after it was used. Perhaps there is a mistake in program logic. Check lines: 926, 944.
↑ V509 The 'new' operator is used in the noexcept 'typelib_typedescription_newEnum' function. It should be located inside the try..catch block, as it could potentially generate an exception.
↑ V509 The 'new' operator is used in the noexcept 'typelib_typedescription_newEnum' function. It should be located inside the try..catch block, as it could potentially generate an exception.
↑ V509 The 'new' operator is used in the noexcept 'typelib_typedescription_newMIInterface' function. It should be located inside the try..catch block, as it could potentially generate an exception.
↑ V509 The 'new' operator is used in the noexcept 'typelib_typedescription_newMIInterface' function. It should be located inside the try..catch block, as it could potentially generate an exception.
↑ V509 The 'new' operator is used in the noexcept 'typelib_typedescription_newInterfaceMethod' function. It should be located inside the try..catch block, as it could potentially generate an exception.
↑ V509 The 'new' operator is used in the noexcept 'typelib_typedescriptionreference_new' function. It should be located inside the try..catch block, as it could potentially generate an exception.
↑ V547 Expression '!bInited' is always true.
↑ V1037 Two or more case-branches perform the same actions. Check lines: 1625, 1680